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Abstract

Mobile robots have become a standard
part of search-and-rescue missions in re-
cent years. Disaster environments push
the robots to face extreme conditions from
the sensory (low illumination, dust, or
presence of dense smoke) and mobility
point of view (complex and often nonrigid
terrain). Deployment of the methods that
help robot’s perception (terrain estima-
tion, object segmentation) and control
(terrain traversal, active perception) in
such an environment is the main focus
of this dissertation thesis. Knowing the
robot’s surroundings is a crucial feature
for many robotics tasks. We present the
self-supervised learning of terrain shape
estimation from the robot’s traversal tra-
jectories. Our novel loss function forces
the terrain prediction to be consistent
with the robot poses (the robot is not
in the collision and has su [Cieht sup-
port). An extreme case of terrain pre-
diction without any exteroceptive data
is also discussed. Moreover, we describe
our active perception method that con-
trols the special depth sensor to obtain
better terrain reconstruction. Victim de-
tection and segmentation in search-and-
rescue missions are crucial tasks that mo-
tivated us to develop an active perception
method for learning control and segmen-
tation from multi-modal data. The vic-
tim segmentation accuracy is improved
by cleverly controlling the pan-tilt ther-
mal sensor unit with the limited field of
view. Traversing the harsh terrain is a
challenge in these scenarios. The rein-
forcement learning procedure of terrain
traversal needs many real rollouts, which
can endanger the robot. To tackle this
issue, we propose a constrained policy
search method that considers safety; it
prevents the robot from being damaged
and helps the faster convergence. The last
part of this dissertation thesis describes
our participation in the DARPA Subte-

rranean Challenge, which tested the abi-
lity of our developed system to work in
actual search-and-rescue-like missions.

Keywords: Scene segmentation, object
detection, active perception, sparse to
dense prediction, robot-terrain
interaction, reinforcement learning



Abstrakt

Mobilni roboty se v poslednich letech sta-
vaji béznou soucasti zachranarskych misi.
Bé&hem nasazeni je robot testovan v ex-
trémnich podminkéach, jak ze senzorického
hlediska (nizké osvétleni, prach nebo pfi-
tomnost hustého koufe), tak z hlediska
pohybového (komplexni a ¢asto nerigidni
terén). Metody vniméani (odhad terénu,
segmentace scény) a metody Fizeni (preko-
nani terénu, aktivni vnimani) pro roboty
v extrémnim podminkach jsou hlavnimi
tématy této prace. Znalost okolniho te-
rénu je klicovd pro mnoho robotickych
Gloh. V rémci této prace prezentujeme
metodu ucéeni odhadu tvaru terénu z pri-
jezdu robotu terénem. Navrhujeme novou
ztratovou funkci, kterd vynucuje tvar te-
rénu konzistentni s pozicemi robotu (robot
neni v kolizi s terénem a je dostatene po-
depren). Dale navrhujeme metodu odhadu
tvaru terénu pro extrémni pfipad, kdy ro-
bot nema zadné exteroceptivni data. Tato
préace se take zabyva metodou aktivniho fi-
zeni specialniho hloubkového senzoru pro
lepsi rekonstrukci scény. Jednou z ddle-
Zitych Uloh zachranarské robotiky je de-
tekce objektl a segmentace prostiedi. V
ramci této disertaCni prace je prezento-
vana Uloha aktivni segmentace prostredi
z multimodalnich dat. Pomoci Fizeni otoc-
ného termalniho senzoru s nizkym zornym
polem zvySujeme presnost detekce obéti.
Navic je zde popsana metoda uceni robotu
prekonéavat sloZity terén, se zarukami na
bezpecnost trajektorii béhem uceni. PFida-
nim bezpecnostnich omezeni navic dosa-
hujeme i rychlejSiho uéeni. Posledni ¢ast
disertaCni prace popisuje nasi ucast na
soutéZzi DARPA Subterranean Challenge,
ktera otestovala algoritmy i schopnost vy-
vijeného systému fungovat v realném na-
sazeni.

Klicova slova: Segmentace scény,
detekce objektd, aktivni vnimani, odhad
hloubkovych dat, interakce robotu s
terénem, posilované uceni

Pfeklad nazvu: Uceni a vnimani robotu
v CasteCné nezndmem prostredi
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Chapter 1

Introduction

Robotics as a research eld deals with di erent exciting problems from the
design and construction of robots and computer systems to motion control
and perception. Nowadays, robots serve not only in almost every factory, but
we also use the robots at our homes to make our lives easier and safer. This
thesis focuses mainly on mobile robots that can move and interact in the
surrounding environment. The pushing of the boundaries of robotics allows
us to use mobile robots in more challenging environments than our living
room is. Therefore, robots are increasingly used in automotive, search-and-
rescue scenarios, or military missions. The robots, for example, serve as an
extension of rst-responders in the search-and-rescue missions, which allows
them to access dangerous areas quickly, locate the potential victims or send
the essential measured data, which can be used to estimate the state of the
disaster area before the human rescuers risk their own lives. Robots operate
in disaster sites with often really harsh conditions.

Search-and-rescue scenarios yield many new challenges to perception and
motion control. The complex environment can contain almost everything
(e.qg., severe obstacles, unstructured terrain, staircases, mud, sand, water),
making the robot's mobility trouble. Learning of the traversal of such an
environment can endanger the robot. Such an example of a hard-to-traverse
environment is depicted in Fig. 1.1. The other problem we struggle with
within the search-and-rescue scenarios is sensor measurements deprivation.
The presence of dense smoke can completely blind the sensors of the robot
that are essential for a successful mission. LiDAR (Light Detection And
Ranging) sensors can also su er in some other environments: surfaces with
low spectral absorbance or high re ectance can cause missing measurements
in the surrounding pointcloud of the robot (for example, water surface).

The deprivation of depth measurements complicates robot localization and
safe navigation. Visually dependent tasks are aggravated in these scenarios
as well. Low illumination or over-illumination brings new challenges to object
detection or victim segmentation tasks. The particular examples of the
sensor-unfriendly environment are shown in Fig. 1.2. The research behind
this thesis contributed to both of the previously mentioned parts. We tackle
the sensory deprived perception problems as well as motion control challenges.
This thesis is divided into chapters where each one is struggling with a slightly

1
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