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Abstract

Mobile robots have become a standard
part of search-and-rescue missions in re-
cent years. Disaster environments push
the robots to face extreme conditions from
the sensory (low illumination, dust, or
presence of dense smoke) and mobility
point of view (complex and often nonrigid
terrain). Deployment of the methods that
help robot’s perception (terrain estima-
tion, object segmentation) and control
(terrain traversal, active perception) in
such an environment is the main focus
of this dissertation thesis. Knowing the
robot’s surroundings is a crucial feature
for many robotics tasks. We present the
self-supervised learning of terrain shape
estimation from the robot’s traversal tra-
jectories. Our novel loss function forces
the terrain prediction to be consistent
with the robot poses (the robot is not
in the collision and has sufficient sup-
port). An extreme case of terrain pre-
diction without any exteroceptive data
is also discussed. Moreover, we describe
our active perception method that con-
trols the special depth sensor to obtain
better terrain reconstruction. Victim de-
tection and segmentation in search-and-
rescue missions are crucial tasks that mo-
tivated us to develop an active perception
method for learning control and segmen-
tation from multi-modal data. The vic-
tim segmentation accuracy is improved
by cleverly controlling the pan-tilt ther-
mal sensor unit with the limited field of
view. Traversing the harsh terrain is a
challenge in these scenarios. The rein-
forcement learning procedure of terrain
traversal needs many real rollouts, which
can endanger the robot. To tackle this
issue, we propose a constrained policy
search method that considers safety; it
prevents the robot from being damaged
and helps the faster convergence. The last
part of this dissertation thesis describes
our participation in the DARPA Subte-

iv

rranean Challenge, which tested the abi-
lity of our developed system to work in
actual search-and-rescue-like missions.

Keywords: Scene segmentation, object
detection, active perception, sparse to
dense prediction, robot-terrain
interaction, reinforcement learning



Abstrakt

Mobilni roboty se v poslednich letech sta-
vaji béznou soucasti zdchranarskych misi.
Béhem nasazeni je robot testovan v ex-
trémnich podminkach, jak ze senzorického
hlediska (nizké osvétleni, prach nebo pii-
tomnost hustého koufe), tak z hlediska
pohybového (komplexni a ¢asto nerigidni
terén). Metody vnimani (odhad terénu,
segmentace scény) a metody Tizeni (pieko-
nani terénu, aktivni vniman{) pro roboty
v extrémnim podminkach jsou hlavnimi
tématy této prace. Znalost okolniho te-
rénu je klicovd pro mnoho robotickych
uloh. V ramci této prace prezentujeme
metodu uceni odhadu tvaru terénu z pru-
jezdu robotu terénem. Navrhujeme novou
ztratovou funkci, kterd vynucuje tvar te-
rénu konzistentni s pozicemi robotu (robot
neni v kolizi s terénem a je dostatecne po-
depten). Déle navrhujeme metodu odhadu
tvaru terénu pro extrémni pripad, kdy ro-
bot nema zddna exteroceptivni data. Tato
prace se také zabyva metodou aktivniho {-
zeni specidlniho hloubkového senzoru pro
lepsi rekonstrukci scény. Jednou z dile-
zitych tloh zachranéiské robotiky je de-
tekce objektt a segmentace prostredi. V
ramci této disertac¢ni prace je prezento-
vana uloha aktivni segmentace prostiedi
z multimodélnich dat. Pomoci fizeni otoc-
ného termalniho senzoru s nizkym zornym
polem zvysSujeme presnost detekce obéti.
Navic je zde popsana metoda uceni robotu
prekonavat slozity terén, se zarukami na
bezpecnost trajektorii béhem uceni. Prida-
nim bezpec¢nostnich omezeni navic dosa-
hujeme i rychlejsiho uceni. Posledni ¢ést
disertac¢ni prace popisuje nasi ucast na
soutézi DARPA Subterranean Challenge,
ktera otestovala algoritmy i schopnost vy-
vijeného systému fungovat v redlném na-
sazeni.

Klicova slova: Segmentace scény,
detekce objektd, aktivni vniméani, odhad
hloubkovych dat, interakce robotu s
terénem, posilované uceni

Preklad nazvu: Uceni a vnimani robotu
v Castecné neznamem prostiedi
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Chapter 1

Introduction

Robotics as a research field deals with different exciting problems from the
design and construction of robots and computer systems to motion control
and perception. Nowadays, robots serve not only in almost every factory, but
we also use the robots at our homes to make our lives easier and safer. This
thesis focuses mainly on mobile robots that can move and interact in the
surrounding environment. The pushing of the boundaries of robotics allows
us to use mobile robots in more challenging environments than our living
room is. Therefore, robots are increasingly used in automotive, search-and-
rescue scenarios, or military missions. The robots, for example, serve as an
extension of first-responders in the search-and-rescue missions, which allows
them to access dangerous areas quickly, locate the potential victims or send
the essential measured data, which can be used to estimate the state of the
disaster area before the human rescuers risk their own lives. Robots operate
in disaster sites with often really harsh conditions.

Search-and-rescue scenarios yield many new challenges to perception and
motion control. The complex environment can contain almost everything
(e.g., severe obstacles, unstructured terrain, staircases, mud, sand, water),
making the robot’s mobility trouble. Learning of the traversal of such an
environment can endanger the robot. Such an example of a hard-to-traverse
environment is depicted in Fig. 1.1 The other problem we struggle with
within the search-and-rescue scenarios is sensor measurements deprivation.
The presence of dense smoke can completely blind the sensors of the robot
that are essential for a successful mission. LiDAR (Light Detection And
Ranging) sensors can also suffer in some other environments: surfaces with
low spectral absorbance or high reflectance can cause missing measurements
in the surrounding pointcloud of the robot (for example, water surface).

The deprivation of depth measurements complicates robot localization and
safe navigation. Visually dependent tasks are aggravated in these scenarios
as well. Low illumination or over-illumination brings new challenges to object
detection or victim segmentation tasks. The particular examples of the
sensor-unfriendly environment are shown in Fig. [1.2. The research behind
this thesis contributed to both of the previously mentioned parts. We tackle
the sensory deprived perception problems as well as motion control challenges.
This thesis is divided into chapters where each one is struggling with a slightly



1. Introduction

Figure 1.1: Example of search-and-rescue environment. Damaged church after
the earthquake in Amatrice in Italy 2016. Left: RGB image captured by onboard
cameras. Right: colored pointcloud obtained using rotational Sick LiDAR.

different task, from terrain reconstruction, over active perception, and motion
control, to the actual search-and-rescue deployment.

Chapter [2| is motivated by our observation, that the shape of the terrain
that supports the robot during its traversal — the supporting terrain — is an
essential input for many subsequent procedures such as motion control or
path planning. Since this shape cannot be measured directly, we instead learn
a convolution network to predict it from lidar and camera measurements. The
prediction is not straightforward since the measurements are often incomplete
due to the terrain reflectivity or biased due to the terrain occlusion by a flexible
(not-supporting) layer such as vegetation or water. In addition to that, it is
complicated to obtain a sufficient amount of manual annotations for any fully-
supervised training. Consequently, we focused on designing a self-supervised
method that learns to predict the shape of supporting terrain from offline-
optimized maps and robot trajectories. Since offline optimization has access
to privileged information in the form of future measurements, the resulting
ground truth is significantly better than what can be measured in the time
of inference. While the learning from the ground-truth maps directly leads
to minimizing the cross-entropy or L2 loss, the learning from ground-truth
trajectories captured during the terrain traversal is non-trivial. To this end,
we proposed so-called KK T-loss that allows us to backpropagate from ground-
truth trajectories to the predicted terrain shape by measuring the physical
consistency between them. The KKT-loss leverages a simple first principle
model of the robot-terrain interaction that places the robot trajectory into
the local minimum of its potential energy. The physical consistency is then
measured as the Euclidian distance from the Karush-Kuhn—Tucker necessary
conditions of this first principle model. The resulting fully-differentiable
KKT-loss thus provides the additional self-supervision signal, which helps
significantly, especially in cases where usual lidar fails, such as non-rigid or
non-Lambertian terrain surface. The next issue we tackle in this chapter is a
tactile terrain reconstruction method for the extreme case of visual and depth
deprivation. In such a scenario, a robot cannot collect any valid measurements
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Figure 1.2: Left: robot in dense smoke. Middle: robot in the dark cave staying
in the water. Right: over-illuminated survivor in the image.

(e.g., due to dense smoke). Our method presented a combined hardware and
software solution to this issue. We designed a custom-built force sensor
assembled inside of the robot tracks. The robot’s pose and information from
the force sensors are then used to train the terrain shape prediction model.

In Chapter [3, we consider the problem of active perception with two
completely different sensors: (i) the solid-state lidar that allows controlling
depth-measuring rays independently, and (ii) the thermal pan-tilt camera.
The solid-state lidar is used on the problem of active 3D map reconstruction.
The main challenge that arises from the control of the lidar stems from the
dimensionality of the action space. We tackle this problem by designing a
novel method that jointly learns to predict the 3D map by the convolutional
neural network and plan trajectories of the depth-measuring rays that will
improve the accuracy the most. The key challenges stem from the fact
that whenever we change the parameters of the map-predicting network,
the result of planning is different, which also changes the training data for
learning. Consequently, we cannot keep learning on the same inputs due
to the distribution shift. Therefore, we iterate the process until a fixed
point solution is found. The pan-tilt thermal camera is used on the problem
of active victim segmentation. Our novel learnable method deploys the
convolutional neural network, which simultaneously (i) segments victims from
incomplete multi-modal data and (ii) actively controls the pan-tilt thermal
camera to maximize the victim segmentation accuracy. This task is complex
due to the limited number of real-world robot interactions for learning. To
overcome this issue, we propose a self-supervised initializing of the network
and optimization-based guiding of motion control learning.

Chapter [4] describes the motion control task of traversing obstacles. As it
can be seen in Fig. [1.1}right and Fig. [I.2-eft, the robotic platform we are
working with is equipped with four subtracks called flippers which could be
used to climb a complex terrain. For the operator teleoperating the robot is
almost impossible to control the flippers during robot navigation; therefore,
we had developed a reinforcement learning algorithm that teaches the robot
to control the flippers based on the terrain shape information obtained from
the aforementioned methods. Learning the policy that will lead to safe terrain

3



1. Introduction

traversal can take a lot of real robot evaluation. Some of the trials may
endanger the robot system or cause rapid wear. Our proposed policy search
method considers safety constraints, which have to hold not only for the final
policy but for the whole learning process. These additional constraints help
the policy to converge safer and also faster.

The common issue behind robotic research is reproducibility. The direct
and fair comparison between the published methods is often complicated
due to different hardware setups or datasets. Fortunately, DARPA (Defense
Advanced Research Projects Agency) organized a grand robotic challenge
that allows us to deploy and test our developed systems in actual search-
and-rescue-like missions and compete with the best researchers in the field
of robotics. The name of the challenge was DARPA Subterranean challenge,
and the objective was to send a team of semi-autonomous robots into the
various underground environments to find and locate defined artifacts. We
participated in this challenge, and Chapter |5 briefly describes our approach
and concludes the result we achieved.

B 1.1 Selected publications and personal contribution

Selected publications that led to the completion of this thesis are mentioned
in this section. The main ideas behind this thesis were published in the Q1
journals or top-class conferences (A* and A CORE ranking). My personal
contribution to each publication is emphasized in the list below.

B Articles in peer-reviewed journals

® Vojtéch Salansky, Karel Zimmermann, Tomas Petiicek, and Toméas
Svoboda. “Pose Consistency KKT-Loss for Weakly Supervised Learning
of Robot-Terrain Interaction Model”. In: IEEE Robotics and Automation
Letters 6 (July 2021), pp. 5477-5484

Q1 robotic journal with impact factor 3.74.

Personal contribution: design and implementation of the pipeline
and neural network for supporting terrain prediction, collecting
dataset, and training the network. Evaluating all the experiments.

40% authorship.
® Tomis Petiicek, Vojtéch Salansky, Karel Zimmermann, and Toméas
Svoboda. “Simultaneous exploration and segmentation for search and
rescue”. In: Journal of Field Robotics 36.4 (2019), pp. 696-709
Q1 robotic journal with impact factor 3.77.

Personal contribution: design and implementation of the pipeline,
design of the neural network for active control, learning of the model,
and real platform experiments.

35% authorship, equal contribution within first two authors.
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1.1. Selected publications and personal contribution

® Tomis Roucek, Martin Pecka, Petr Cizek, Tomas Petiicek, Jan Bayer,
Vojtéch Salansky, et al. System for multi-robotic exploration of under-
ground environments CTU-CRAS-NORLAB in the DARPA Subterranean
Challenge. 2021. arXiv: [2110.05911 [cs.RO]

New journal.

Personal contribution: object detection, human operator, system
integration.

5% authorship.

B Conference proceedings

® Karel Zimmermann, Tomas Petiicek, Vojtech Salansky, and Tomas
Svoboda. “Learning for Active 3D Mapping”. In: 2017 IEEFE Int. Conf.
on Comput. Vision (ICCV). 2017, pp. 1548-1556

A* CORE Rank conference in computer vision. Average acceptance
rate is 25 %. This publication was accepted for the oral presentation
where the acceptance rate was 2.6 %.

Personal contribution: design and implementation of the pipeline,
design of the neural network for 3D reconstruction from sparse
measurements, learning of the model, and all experiments.

20% authorship.

® Martin Pecka, Vojtéch Salansky, Karel Zimmermann, and Tomas Svo-
boda. “Autonomous flipper control with safety constraints”. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2016, pp. 28892894

A CORE Rank conference in robotics. Average acceptance rate is
45 %. Equal contribution.

Personal contribution: theory behind constrained reinforcement
learning technique and experiments.

25% authorship, equal contribution.
® Vojtéch Salansky, Vladimir Kubelka, Karel Zimmermann, Michal Rein-
stein, and Tomas Svoboda. “Touching without vision: terrain perception
in sensory deprived environments”. In: 21st Computer Vision Winter
Workshop (pp. 1-9). 2016
International conference in computer vision.

Personal contribution: whole pipeline and method for terrain profile
estimation. Experiments.

60% authorship.


https://arxiv.org/abs/2110.05911

1. Introduction

® Tomas Roucek, Martin Pecka, Petr Cizek, Tomas Petii¢ek, Jan Bayer,
Vojtéch Salansky, et al. “DARPA Subterranean Challenge: Multi-robotic
Exploration of Underground Environments”. In: Modelling and Simu-
lation for Autonomous Systems. 2020, pp. 274-290. 1SBN: 978-3-030-
43890-6

International conference focused on autonomous systems.

Personal contribution: object detection, human operator, system
integration.

5% authorship.
® Tomas Petricek, Vojtéch Salansky, Karel Zimmermann, and Tomas
Svoboda. Simultaneous Exploration and Segmentation with Incomplete
Data. Workshop on Action and Anticipation for Visual Learning, ECCV.
2016
Computer vision workshop.

Personal contribution: design and implementation of the pipeline,
design of the neural network.

35% authorship, equal contribution within first two authors.



Chapter 2

Terrain reconstruction learning

The knowledge of the surrounding terrain is an essential clue for autonomous
mobile robots. Unfortunately, the real-world conditions make the dense
and accurate terrain measurements almost impossible. The laser beams are
reflected from some surfaces, which cause holes in the map or are corrupted
by dense smoke or dust, creating false objects in the map. Moreover, the
information obtained by the lidar measures the surface, which in some cases
does not correspond to the rigid terrain that gives us a main clue for robot
movement. For example, measuring the tall grass in the outdoor scenario
will create a false step in the map that does not correspond to the actual
supporting terrain (i.e., the terrain that will provide rigid support for the
robot during its traversal).

This part of the thesis focus on terrain shape estimation and representation
of the surrounding environment. In Section [2.1| we address the problem
of self-supervised learning for predicting the shape of supporting terrain
from sparse input measurements. The learning method exploits two types
of ground-truth labels: dense 2.5D maps and robot poses, both estimated
by a usual SLAM procedure from offline recorded measurements. We show
that robot poses are required because straightforward supervised learning
from the 3D maps only suffers from: (i) exaggerated height of the supporting
terrain caused by terrain flexibility (vegetation, shallow water, snow, or sand)
and (ii) missing or noisy measurements caused by high spectral absorbance or
non-Lambertian reflectance of the measured surface. We address the learning
from robot poses by introducing a novel KKT-loss, which emerges as the
distance from necessary Karush-Kuhn-Tucker conditions for constrained local
optima of a simplified first-principle model of the robot-terrain interaction.
We experimentally verify that the proposed weakly supervised learning from
ground-truth robot poses boosts the accuracy of predicted support heightmaps
and increases the accuracy of estimated robot poses. All experiments are
conducted on a dataset captured by a real platform. Both the dataset
and codes which replicate experiments are made publicly available. The
corresponding section is based on the publication "Pose Consistency KKT-
Loss for Weakly Supervised Learning of Robot-Terrain Interaction Model", [1]
which was published in the IEEE Robotics and Automation Letters (RA-L),
the Q1 journal with the impact factor 3.74.

7



2. Terrain reconstruction learning

The extreme case where all exteroceptive sensors are blinded is discussed in
Section 2.2 We propose the approach to estimating the surroundings of the
robot using only his pose and tactile sensors. We demonstrate a combined
hardware and software solution that enhances the sensor suite and perception
capabilities of a mobile robot intended for real search-and-rescue missions.
When exploring the unknown environment of a disaster site, a common fail-
case is the outage or deterioration of exteroceptive sensory measurements
that the robot heavily relies on, especially for localization and navigation
purposes. Deprivation of visual and laser modalities caused by dense smoke
motivated us to develop a novel solution comprised of force sensor arrays
embedded into tracks of our platform. Furthermore, we also exploit a robotic
arm for active perception in cases when the prediction based on force sensors
is too uncertain. Besides integrating hardware, we also propose a framework
exploiting Gaussian processes followed by Gibbs sampling to process raw
sensor measurements and provide probabilistic interpretation of the underlying
terrain profile. In the final, the profile is perceived by proprioceptive means
only and successfully substitutes for the lack of exteroceptive measurements in
the close vicinity of the robot, when traversing unknown and unseen obstacles.
We evaluated our solution on real-world terrains. That section is based on
the work "Touching without vision: terrain perception in sensory deprived
environments' |6] published at the international Computer Vision Winter
Workshop.

B 21 Self-supervised learning of pose consistent
terrain reconstruction

Accurate real-time prediction of robot-terrain interaction from raw sensory
measurements is crucial for many mobile robotic tasks ranging from computing
traversability /costmap for high-level path planning [9] to state representation
for low-level motion control [10]. Even though a usual low-level map such as
ICP-aligned lidar scans (optionally discretized to voxelmap or heightmap) is
often sparse and assumes terrain to be rigid, it is often used as an input to
these tasks [11, 9, |12, |13, |14]. In contrast to others, we propose to predict
an intermediate representation — the shape of supporting terrain. We show
that such architecture outperforms existing state-of-the-art methods in terms
of accuracy of predicted supporting terrain and consequently estimated robot
poses. Since there is no straightforward way to obtain the ground-truth shape
of supporting terrains without manual annotations, we propose to learn it
in a self-supervised way from "future" maps and robot poses optimized in
simultaneous localization and mapping pipeline (SLAM).

We define the supporting terrain as the layer of terrain, which can provide
rigid support for the robot during its traversal. For example, for flexible
terrain such as grass, the supporting terrain corresponds to the shape of
the lidar-immeasurable rigid layer of the terrain (ground). The shape of
supporting terrain is modelled by a dense 2.5D heightmap.

8



2.1. Self-supervised learning of pose consistent terrain reconstruction

reconstruction

pose consistency [
By | v

loss Lyl

h ,
gt poszs\— /”“’

Figure 2.1: Top: The real robot platform is equipped with four independently
actuated flippers, which allows traversing complex terrains. Bottom: The input
x of the prediction network hy is the sparse heightmap obtained by projecting
the ICP-aligned lidar scans on the discretized horizontal plane, enriched by visual
features. The proposed approach learns to predict the support heightmaps h by
enhancing the reconstruction loss by the pose-consistency loss. The proposed
pose-consistency loss explicitly models the robot-terrain interaction and enforces
the predicted support terrain to be physically consistent with the robot poses.
Ground-truth map and ground-truth poses used for learning are obtained from
all the measurements along the training trajectories.

The most straightforward way of estimating the supporting heightmap is
linear interpolation from ICP-aligned lidar measurement. We show that such
an approach typically suffers from (i) missing measurements caused by terrain
self-occlusions, (ii) the low spatial resolution of distant terrains, (iii) missing
or noisy measurements caused by high spectral absorbance or non-Lambertian
reflectance of the measured surface, (iv) exaggerated height of supporting
terrain caused by terrain deformations (flexible vegetation, shallow water,
snow or sand).

Issues (i) and (ii) could be partially overcome by learning to interpolate
the terrain in a self-supervised way, where ground truth is estimated from
offline-optimized 3D maps of the environment (as described in Section
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2. Terrain reconstruction learning

and [4]). This approach partially suppresses (i) the terrain occlusions and
(ii) low-spatial resolution by introducing the measurements from additional
viewpoints into the learning procedure, however (iii) the lidar unfriendly
surfaces and (iv) the terrain flexibility remains unresolved since the ground-
truth shapes of the supporting terrain for the fully-supervised learning cannot
be easily obtained.

In order to address issues (iii) and (iv), we enhance the fully-supervised
reconstruction loss of (Section 3.1/ and [4]) by a new pose-consistency loss; see
Fig. 2.1] for the outline. The proposed architecture simultaneously optimizes
two losses: Reconstruction loss £, (h, fl), where ground-truth heightmap h
(obtained from offline-optimized maps) enforces the predicted support terrain
h to be close to its rigid reconstruction, and pose consistency loss Lyt (¢, ﬁ),
where ground-truth robot pose ¢ implicitly enforces the predicted supporting
terrain to provide a necessary (yet collision-free) support of the robot. The
pose consistency loss provides additional supervision on places, where ground-
truth heightmap h is not available. Fig.[2.2] shows supporting terrain after
optimization of the pose consistency loss.

Any direct patching of holes in ground-truth heightmaps by the robot body
model would strongly bias the estimation, since it forces the predicted terrain
to provide support on all points on the robot body. We avoid this shortcoming
by introducing a novel pose-consistency loss. To construct the pose-consistency
loss, we exploit a simple yet non-convex first-principle model, which assumes
that the robot pose on an uneven terrain corresponds to a minimum of its
potential energy with respect to robot-terrain collision constraints. The
solution to this problem provides the physically plausible robot pose on
a given heightmap. We construct the pose-consistency loss to answer the
opposite question: does the predicted heightmap make the ground-truth pose
to be a solution to this problem? To do so, we simplify the problem and
search for heightmaps, for which the ground-truth pose satisfies the necessary
Karush-Kuhn-Tucker (KKT) conditions |15] for the constrained local optima
of this first-principle model. Obviously, the number of heightmaps consistent
with a single pose is immense, since it grows exponentially with the size of the
predicted heightmap. The KKT-loss avoids the explicit generation of all pose-
consistent heightmaps. The proposed KKT-loss is constructed to measure
the distance from these KKT conditions. Consequently, its optimization
directly leads towards physically consistent heightmaps in the sense that
any heightmap, which zeros the KKT-loss, is considered to be physically
consistent with the ground-truth pose.

Main contribution lies in:

® introducing a novel KKT-loss, which allows for weakly-supervised learn-

ing of the supporting terrain from ground-truth poses and suggesting an
algorithm for its efficient optimization

B evaluating the proposed method on a real dataset and publishing the

codes and the dataset, which replicates the results reported in the exper-
iments.!

1github .com/ctu-vras/pose-consistency-kkt-loss
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2.1. Self-supervised learning of pose consistent terrain reconstruction

cu/r\'rent pose

Figure 2.2: Robot is represented as a set of mass points p;,m; Terrain is
represented as heightmap iLj. Top: Network predicts the shape of the supporting
terrain (blue heightmap) from measurements available in the current pose. The
ground-truth pose is inconsistent with the terrain since the robot model is in
collision (red points). Bottom: Optimization of KKT-loss for a given ground-
truth pose yields physically plausible reconstruction, which does not force the
terrain to copy the shape of the robot.

B 2.1.1 Related work

This section consists of three parts. The first part discusses approaches
to the object reconstruction task. The second part summarizes methods
that predict the robot-terrain interaction and discuss their relation to the
proposed supporting terrain. The third part discusses learning approaches
that resemble proposed KKT-loss in the sense that they learn to predict
values connected with ground-truth labels through an optimization problem.

B Object reconstruction

High performance of image-based models is demonstrated in [16], where a
CNN pooling results from multiple rendered views outperforms commonly
used 3D shape descriptors in object recognition task. Several volumetric and
multi-view network architectures for object classification are compared by Qi
et al. . The authors focus on closing a performance gap between these two
approaches and investigate several techniques towards this goal, such as data
augmentation, or using 2D convolution with elongated kernels for projecting
volumetric representation into a 2D image. We choose a similar approach in
designing the mapping network. Choy et al. proposed a unified approach

11



2. Terrain reconstruction learning

for single and multi-view 3D object reconstruction which employs a recurrent
neural architecture. Their recurrent neural network architecture learns a map
from sequences of images to object shapes in terms of 3D occupancy grid
(32 x 32 x 32 voxels). The architecture they use is not suitable for dealing
with high-dimensional outputs due to its high memory requirements.Model-
fitting methods such as [19, |20 [21] rely on a manually-annotated dataset
of models and assume that objects can be decomposed into a predefined
set of parts. Besides that these methods are suited mostly for man-made
objects of rigid structure, fitting of the models and their parts to the input
points is computationally very expensive; e.g., minutes per input for |19} [20].
Decomposition of the scene into plane primitives as in [22] does not scale
well with scene size (quadratically due to candidate pairs) and could not
most likely deal with the level of sparsity we encounter. Geometrical and
physical reasoning comprising stability of objects in the scene is used by [23]
to improve object segmentation and 3D volumetric recovery. First, solid 3D
primitives are recovered from point cloud, and then the unstable objects are
grouped with the physically stable ones to minimize an energy function which
includes a penalty for object (in)stability, size, geometric complexity etc.
The proposed volumetric recovery is based on implicit algebraic models and
the assumption of objects being aligned with coordinate axes which seems
unrealistic in practice. Moreover, it is not clear how to incorporate learned
shape priors for complex real-world objects which were shown to be beneficial
for many tasks (e.g., in [24]). Firman et al. [25] use a structured-output
regression forest to complete unobserved geometry of tabletop-sized objects.

B Robot-terrain interaction models

Typical quantities, which are predicted in order to model the robot-terrain
interaction, are arbitrary values that represent the expected behaviour of the
robot on uneven terrain. We briefly discuss several different quantities such
as the expected pose of the robot on the terrain [26], robot-terrain reaction
score |14], friction/slippage coefficient [27]. Most of these methods is not a
direct competitor; however, their accuracy heavily depends on the accuracy
of reconstructed terrain, which is provided as an input.

Geometrical analysis: The most straightforward way of predicting the
robot-terrain interaction is the direct geometrical analysis of the terrain shape,
such as point cloud or heightmap. Geometrical analysis typically exploits
heuristics based on manually chosen features, such as terrain normals, height
difference, slope, roughness, and robot shape [28,29]. Some approaches |30,
26| iteratively optimizes the robot-terrain transformation to obtain the contact
points and static robot pose.

Self-supervised learning: Other methods learn to predict the robot-
terrain interaction directly. Methods such as Suryamurthy et al. [13] learn
to estimate terrain roughness from RGB images for wheeled Centauro robot,
where terrain roughness labels are automatically computed from SfM opti-
mized heightmaps. In contrast to us, such an approach inherently suffers from
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2.1. Self-supervised learning of pose consistent terrain reconstruction

the inability to assess the terrain’s flexibility and the inability to reconstruct
visually homogeneous terrain. Many others directly learn from the recorded
behaviour of robot on the terrain. For example, Wellhausen et al. |[14] estimate
the ground reaction score for the legged ANYmal robot, where force-torque
sensors automatically estimate labels. Similarly, Angelova et al. [27] estimate
the slippage coefficient for a planetary rover. The approach proposed by
Chavez et al. [31] learn to predict the terrain traversability estimated from the
simulator and Nouza et al. [32] predicts robot poses. Since it is impossible to
obtain real ground truth without exhaustive manual annotations, they suggest
training it from the simulation. All of these methods expect to have complete
heightmaps, which are typically not guaranteed in real robotic scenario due
to occlusions or reflectance of the surface.

Most of the previously discussed methods heavily depend on the accuracy of
provided terrain shape. Since ICP-aligned point clouds [33] or heightmaps are
inaccurate, it is possible to improve their accuracy by a refinement step, which
provides a more accurate estimate of a terrain shape. Methods such as [4} |34}
35] complete the sparse laser measurements using the neural networks. In
contrast to our approach discussed in this chapter, these methods do not take
the robot-terrain interaction (such as robot pose) into account, and therefore
they can only reconstruct the rigid terrain with lidar-friendly surfaces.

In contrast to the straightforward prediction of previously mentioned
quantities (terrain roughness score, slippage, ground reaction score, or the
traversability), we suggest predicting the supporting terrain as a preliminary
representation, which is more suitable input to these methods than a noisy
3D point clouds. This claim is experimentally verified on the pose prediction
and heightmap reconstruction problem.

B Learning with implicit optimization

The problem of learning the shape of support terrain from ground-truth poses
belongs to the class of learning approaches, where it is not easy to obtain
the ground truth for fully-supervised learning. However, it is possible to
use predicted values as an input to an optimization problem, the solution of
which can be compared to an alternative ground truth that is easy to obtain.
It has been recently shown that a convex optimization problem could be used
as a differentiable layer in neural network [36]. While various applications
ranging from optimal control to signal denoising has been shown, it cannot
be directly used since we need to differentiate through the non-convex first
principle model of the robot-terrain interaction.

Inverse reinforcement learning (IRL) is a class of methods, which use
an optimization layer to relate predicted values (costmap) to ground truth
(expert trajectories). Such approaches exploit an expert driver to collect
trajectories, which serves as easy-to-obtain ground truth for learning the
costmap model, for which the straightforward ground truth is typically not
available. The IRL assumes that the expert driver has a latent costmap, for
which the executed trajectory is optimal (i.e. has the lowest sum of costs).
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2. Terrain reconstruction learning

Given this assumption, it is possible to learn to predict this costmap by
searching the optimal trajectories on predicted costmaps and then comparing
them with those executed by the driver. The learning requires backprop-
agating through the layer that performs the search of optimal trajectories
for a given costmap. Authors typically either train differentiable policies
that imitate drivers’ behaviour or use Dijkstra in each iteration and than
backpropagate gradients along the fixed optimal trajectory only. IRL has
been used on several mobile platforms. For example, Silver et al. [9] apply it
on the six-wheeled Crusher military platform, while Wulfmeier et al. [12]
or Zeng et al. [37] learned spatial traversability for driving an autonomous
car in complex urban environments. In contrast to previous self-supervised
approaches, the IRL allows to learn also the non-traversable terrain directly
on the real platform from the expert behaviour. However, the connection
between the expert trajectories and the traversability is often weak; therefore,
the problem is typically ill-posed [38]. In addition to that, expert trajectories
are often sub-optimal, which significantly harm the resulting costmap. Since
IRL methods use different ground truth (the expert trajectories) and the
optimization layer (search for cost-minimizing path), it cannot be easily
applied for learning from ground-truth poses.

Multiple Instance Learning (MIL): One way to avoid direct backprop-
agation through an optimization layer is to explicitly generate all possible
predictions, which make a given ground truth to be the solution of the under-
lying optimization problem, and then train on these predictions via MIL. For
example, the proposed KKT-loss enforces the predicted support heightmap
to provide a necessary (yet collision-free) support of the robot. One could
achieve a similar effect by employing the MIL [39]. Such an approach would
generate huge positive bags consisting of all supporting terrains, which are
physically consistent with a given ground-truth pose, and then minimize
the reconstruction loss from the closest sample in each positive bag. However,
the number of heightmaps consistent with a single pose is immense since it
grows exponentially with the predicted heightmap size. In contrast to the
multiple instance learning, the proposed KKT-loss does not require to gener-
ate all pose-consistent heightmaps explicitly; it just measures the distance
from KKT conditions.

Multi-task learning: Another alternative, which allows to easily back-
propagate through the optimization problem, is to train a network, which
directly estimates solutions of the optimization layer and use this network as
a simply differentiable replacement for the optimization layer. A similar idea
appears either in multitask learning [40] or weakly-supervised learning [41].
The main disadvantage is that the replacement network strongly biases the
learning process by its own inaccuracy.

B 2.1.2 Theory

We train a convolutional network hy : X — H, which maps sparse heightmaps
x € X, estimated by projecting the ICP-aligned [33] lidar scans on the
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Figure 2.3: Visualization of network architectures. Network hg predicts the dense
supporting heightmap from sparse input. Training minimizes reconstruction
loss and pose consistency loss. We propose two types of pose consistency losses:
(i) KKT-loss and (ii) pose predicting loss (concatenation of pretrained pose
regression network g,, predicting roll, pitch, z on the dense supporting heightmap
with L2 loss on ground-truth poses).

discretized horizontal plane (optionally enriched by visual features), on dense
support heightmaps he H, where 6 is the vector of network parameters,
see Fig. for an overview. In our experiments, the input x is either a
two-channel 2D array with heights in the first channel and NaNs binary
encoded in the second channel or a multichannel 2D array with heights,
NaNs, and visual features. We exploit two types of self-supervised labels
(i) ground-truth heightmaps h € H, (ii) ground-truth robot poses ¢ € @,
both estimated offline from recorded measurements by a SLAM pipeline .
Therefore, the ground truth for a prediction in a certain time-stamp also
includes future measurements. Both types of labels are imperfect. Heightmaps
are noisy, incomplete, and overestimate support heights on flexible terrains.
Robot poses constrain the shape of the underlying terrain only by its physical
consistency with the predicted terrain. Learning is defined as the minimization
of composite loss on both types of labels.

B Learning from ground-truth heightmaps

Given a ground-truth heightmap h and predicted supporting heightmap
h, we use (optionally asymmetric) L2-loss £,(h,h) = || max{a(h — h),h —
h}||3 , which optionally provides decreased loss for underestimated heights.
Especially, if a = 0 the reconstruction loss is quadratic upper bound, if a = 1
the reconstruction loss becomes a usual L2 loss.

B Learning from ground-truth poses

We introduce an additional penalty for predicting heightmaps, which are
physically inconsistent with the ground-truth robot pose, such as terrains
that either does not provide sufficient stability of all degrees of freedom of the
robot or colliding with the robot body. To enforce the penalty, we propose
two different pose-consistency losses: (i) the KKT-loss Lyg : ® x H — R,
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2. Terrain reconstruction learning

which is purely based on the first-principle model (Section 2.1.2.2)) and (ii)
pose-predicting loss £, : & x H — R (Section 2.1.2.3)), which contains pose-
predicting regressor g, followed by L2 loss on predicted (,Ab and ground-truth
pose ¢: L,(¢, fl) = Lo, gw(fl)) The pose-predicting regressor g, has to be
trained in advance.

B 2.1.2.1 Architecture

We study two different cases: (i) strictly rigid terrain, on which the supporting
terrain is equivalent to its dense reconstruction, and (ii) partially flexible
terrain, on which the predicted support terrain is lower or equal to its dense
reconstruction.

Strictly rigid terrain. In this case, the input x is only the sparse heightmap
(2D array with NaNs). The learning minimizes both losses simultaneously
L,(h,h) + Ly (¢, h). For the reconstruction loss, we use a = 1, since the
output should directly correspond to ground truth h.

Partially flexible terrain. In this case, the input x is the sparse heightmap
enriched by visual features obtained by projecting outputs of RGB network on
the heightmap. We observed that the simultaneous minimization of both losses
on a flexible terrain suffers from undesirable interference. The reconstruction
loss pulls predicted heights towards lidar-measured heights on flexible terrain,
while the pose consistency loss enforces lower heights that do not collide
with the robot body. To avoid such undesirable behaviour, we propose to
divide hy into two sub-networks. The first sub-network (denoted as "rigid
terrain prediction" in Fig. 2.3)) is responsible for reconstructing the terrain
hy as it has been rigid, the second sub-network (denoted as "soft terrain
adjustment" in Fig. 2.3)) predicts the terrain flexibility. The reconstruction
loss is connected between these sub-networks, while the pose consistency loss
is connected in the end. The learning minimizes compound loss: £, (h, fld) +
Lkt (¢, fl) + Lo (fld, ﬁ), where the last term slightly encourages the predicted
supporting terrain to be similar to the rigid reconstruction ﬁd, see Fig. [2.3.
The reconstruction loss naturally enforces that the rigid reconstruction hy is
a necessary part of the predicting process without influencing the second sub-
network. In this scenario, we experimented with asymmetric reconstruction
loss (i.e. with a < 1). Eventually, it turned out that the best is to enforce
the upper bound directly into the hg architecture by making the "soft terrain
adjustment' sub-network only able to decrease ﬁd by subtracting the non-
negative outputs from ﬁd.

B 2122 KKT loss

In this section we firstly introduce a simple first-principle model, allows to
estimate robot pose ¢, given a predicted heightmap hy(x). This model is
employed in the next part to construct the KKT loss. Then we describe
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2.1. Self-supervised learning of pose consistent terrain reconstruction

efficient estimation of KKT loss by the inner-loop minimization of its KKT
multipliers.

First-principle model. Let us assume that a set of mass points represents the
robot (pi,m;)i=1...N, where p; € R? are 3D coordinates and m; € R are
weights, see Fig. |2.2. We omit modeling the passive compliance?| of flipper-
motors and assume, that the positions of four independently articulated
flippers in a given time are fixed in a measured position, therefore flipper
points become a rigid part of the model. Robot pose ¢ = [, t] is uniquely
determined by its roll, pitch, yaw angles denoted by a and translation vector
t € R3. Matrix R(a) denotes rotation matrix corresponding to rotation
angles a. Given a predicted heightmap h = hg(x) € H, we define robot pose
estimation problem as the minimization of its potential energy

Zmz‘ g9 [R(a) - pi +t]. (2.1)

with respect to collision constraints
hi — [R(a) - p; +t]. <0 ¥,

where [.]. denotes the z-coordinate of the vector inside the brackets and h; is
the height corresponding to point R(a) - p; + t. Note, that if the pose needs
to optimized (which is not the case of this section) then the point-height
correspondences have to be re-established in each iteration.

Consistency of predicted heightmap with ground-truth pose. We express
the consistency of the predicted heightmap h with a ground-truth pose ¢
as the L2-distance from the necessary conditions for the constrained local
optimality of ¢ in this model. In particular, given the Lagrangian of the pose
estimation model

L(a,t,h, \) :Zmi g+ [R(a) - pi + t] .+

+Z>\z‘(ﬁz‘ - [R(a) - pi + t2), (2.2)

where A denotes the KKT multipliers, we express necessary optimality condi-
tions:
Stationarity conditions

OR(a) -pi+t].

OL(a,t,h, ) A A
oa,t N zi:(ng — M) oa, t =0,

complementary slackness conditions

)\i . (ill— [R(a) 'pi—i-t]z) :()7

2By passive compliance, we refer to flipper motors inability to lift the body without any
additional support of the main tracks, which results in a passively smooth motion over the
terrain.
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primal feasibility conditions
iLi— [R(a)-pi—i-t]z SO Vi,

dual feasibility conditions
A>0.

While stationarity together with complementary slackness assure physical
stability of the robot on the predicted heightmap h in all considered degrees
of freedom ¢, the primal feasibility assures that the predicted heightmap
does not collide with the robot model.

The KKT-loss of the predicted heightmap h for a ground-truth pose ¢ is
then defined as follows

2

IR(a) - p; +t].
Z(mig — M) Jda,t

)

Liat(¢,h) = m;n{‘

£ 37 (i (s = [R(@) i+ 8].)) + (2.3)

~ 2
+C - (max{0, i — [R(e) -pi +8]:3)" | A= o},

where C' > 0 is a learning hyper-parameter. In our experiments, we use
C = 100, since it was a reasonable compromise between resulting primal
feasibility and obtaining an optimization-friendly landscape of the KKT-loss.
However we have not noticed any significant impact on the results for C' = 10
or C'=1000 (if the learning rate was correspondingly adjusted).

Estimating the KKT-loss by efficient inner-loop optimization. Since the
Lagrangian L(a,t,h, A) is linear in KKT multipliers, the minimization over
A > 0 reduces to the following non-negative least squares problem:

2

+

IR(a) - pi +t].
Z(mig — M) da,t

7

A* = i
arg min ﬂ

3 (A (hi — [R(@) - pi + 1) Az o}, (2.4)

which is known to have an efficient solution [42]. For the sake of simplicity
we skip the terms which does not depend on );. Learning of parameters 6
with the KKT-loss is summarized in the following algorithm:

We provide fully differentiable implementation of the KKT-loss, which al-
lows for learning through standard PyTorch interfaces such as
kkt_loss(net) .backward().

B 2.1.2.3 Pose-predicting loss

We suggest to follow the idea of multi-task learning for semantic segmentation,
where a classifier of another task is trained in advance and then used to
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2.1. Self-supervised learning of pose consistent terrain reconstruction

Algorithm 1: Estimating the gradient of KKT-loss
Input: Training batch (x;,¢;), j=1... M
Robot model p;,m;, i=1...N
for j=1...M do
Predict heights (feedforward pass): h = hy(x;)
Estimate A* by solving the non-negative least squares
Problem (2.4)).
Construct KKT-loss Lyki(¢;, he(x;)) by substituting inner loop
minimizer A* into eq. (2.3)).

Cumulate gradient w

with respect to parameters 6

estimate labels for the original task. Similarly, we start by learning the pose
regressor g, : H — @, which predicts the robot pose ¢ given the heightmap
h; see Fig. [2.3| for network architecture details.

Since the robot observes a significantly larger area than it physically visits,
there are many heightmap patches for which the pose is unknown. We denote
J to be the set of indices of heightmap patches for which the real ground-truth
pose is known and K to be the set of all indices. Since J is relatively small
for training a reliable pose regressor, we decided to exploit also the real
heightmap patches K \ J for which the real pose is unknown by estimating
synthetic robot poses on them.

In particular, given a pretrained reconstruction network hg(x), we first
reconstruct each dense heightmap h = hg(x) and then find corresponding
ground-truth pose as the solution of the first principle model:

¢ =arg 121%1;771@ g [R(a) - pi + t] (2.5)
subject to: h; — [R(a) - p; +t]. <0 V;,

The solution is searched by the steepest gradient method with a quadratic
exterior penalty function.

Given these synthetically estimated poses we learn the pose predicting re-
gressor g,, on mixed training data K, consisting of both real and synthetically
estimated poses

argmin Y La(cy. g (). (2.6)
ke K

Finally, we construct the pose predicting loss £, as the L2 error between
ground-truth pose ¢ and predicted pose ¢ = g, (h)

Ly(¢.h) = La(¢, gw(h)) = La(, ¢) (2.7)

and train the heightmap predicting network hg by minimizing pose predicting
loss on real ground-truth poses ¢, j € J.

> Lo(o), ha(x;)) (2.8)

jed
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Since the change in parameters 6 changes the distribution of reconstructed
heightmaps hy,, the pose regressor should be retrained. Theoretically, we
should iterate this process until a fixed point is reached; however, we observed
in the practice that a good initialization of hy is sufficient.

The pose predicting loss can be understood as a counterpart of the proposed
KKT-loss. In contrast to KKT-loss, the pose predicting loss suffers from the
regressor bias. The bias is strong since flexible terrains and lidar-unfriendly
surfaces cannot be used for the regressor training. In the other hand, the
pose-predicting loss does not require any inner-loop optimization, therefore
its backpropagation is faster®.

B 2.1.3 Experiments

We evaluate the performance of the proposed methods on a real-world dataset.
The achieved results are compared with two state-of-the-art methods [32} |4].
For the sake of a fair comparison, all methods are implemented and trained
from scratch on the same network architectures, training/testing subsets and
hyper-parameters®,

B Dataset

Dataset consists of trajectories collected by the tracked robot during the
traversal of various rigid and flexible obstacles. The robot was equipped
with a spherical camera PointGrey Ladybug3, LiDAR SICK LMS-151, and
inertial measurement unit (IMU) Xsens MTi-G. Internal camera parameters
were factory calibrated, camera-lidar calibration was based on [43]. The data
consist of the sparse input heightmaps x enriched by projected RGB-ResNet
[44] features, ground-truth heightmaps h and ground-truth robot poses ¢.
All heightmaps are obtained as follows: Given a set of lidar scans, odometry
measurements, and IMU data, we estimate a 3D point cloud map by a SLAM
approach [33]. We filter out the ceiling automatically and discretize the
resulting 3D point cloud into a heightmap with 10-cm bins. This heightmap
is transformed into a robot-centric frame with gravity-aligned z-axis (i.e.,
the frame with roll and pitch equal to zero). The whole dataset consists
of 871 training, 335 validation, and 745 testing heightmaps each of size
25.6 mx25.6 m. It contains over 4 - 10° predictable heights (usually only a
part of the heightmap is known) and more than 2 - 10 robot poses (there are
multiple robot poses for each heightmap). The 2/3 of the dataset (used for
the "Strictly rigid terrains" experiment) consist only of rigid terrain, collected
indoor with robot traversing over various obstacles and driving on uneven
terrain in experimental mines (see Fig.[2.4). The remaining 1/3 of the dataset
(used in the "Partially flexible terrains" experiment) contains both rigid and
flexible terrains. This part of the dataset was collected outdoor on various

3The backpropagation over the KKT-loss for a single robot pose takes about 35 ms on a
quad-core 2.3 GHz Intel i7 processor with 16 GB RAM.

4All the approaches were trained using Adam optimizer with learning rate 107%, and
the final weights were picked using the validation set.

20



2.1. Self-supervised learning of pose consistent terrain reconstruction

terrains such as cobblestones, rocks, paths, grass, or clay (see Fig. 2.5). While
the proposed methods could be adapted to different robot models, the dataset
we collected is specific to the robot and sensor model.

Input x: The sparse input heightmap at time ¢ is the heightmap estimated
from lidar, IMU, and odometry measurements captured until this time by
the procedure described above. We extend the heightmap by RGB features
obtained from the camera image captured in time t. The RGB features are
estimated from the camera image by a pre-trained ResNet network. The
resulting 150 features are upsampled to original image resolution and projected
onto the heightmap. The input for terrain reconstruction x has dimension
256 x 256 x 152. The sparse array with terrain heights is in the first channel
(see Fig. [2.4a), the binary mask of unknown measurements is in the second
channel and the camera features in the subsequent 150 channels. In the
experiment showing rigid terrain reconstruction, we use only the first two
channels consisting of a sparse measurement and a corresponding mask.

Ground truth: The ground-truth label h at time ¢ is the heightmap
estimated from lidar, IMU, and odometry measurements captured along the
whole recorded trajectory by the procedure described above. In contrast to
sparse inputs, the ground truth also contains future measurements, therefore
it is significantly denser and more accurate (compare Fig. 2.4a and Fig. 2.4b).
Nevertheless, the ground-truth heightmaps are still often inaccurate and
incomplete, and they suffer from discretization along all axes (see Fig. 2.4b).
Each ground-truth pose ¢ contains roll and pitch angles of the robot and
z coordinate of the position, resulting from the same SLAM procedure.

B Methods

We evaluate the performance of proposed methods (r+kkt and r+p), which
minimize compound loss described in Section [2.1.2.1] with two state-of-the-
art methods (li [32] and r Section 3.1[4]) in terms of the supporting terrain
reconstruction accuracy and pose predicting accuracy. All compared methods
use the same SLAM procedure [33] to align the input measurements and
the pose is always predicted from estimated supporting terrain h by pose
predicting network g,,. g, is trained® to minimize L (¢, gw(ﬁ)) A detailed
description of implemented methods is in the following paragraphs.

li: This method is based on work [32], which predicts the robot poses from
heightmaps by linear and Gaussian process regression on linearly interpolated
heightmaps. We replicate this work, by filling the missing measurement by
linear interpolation and then predicting the pose by g,,.

r: This method replaces the linear interpolation by deep convolution
network hg trained by minimizing reconstruction loss £, (h, hy(x)) similarly
to [4]. The pose estimation remains the same as in work [32].

r+p: Method corresponds to learning with pose-predicting loss (Sec-
tion [2.1.2.3). This method first pretrains the hy and g, network in the same

®To train the g, network we used 5 - 10° terrain-poses, and the testing error evaluated
on ground-truth heightmaps was 0.070.
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@ ®) (© "'

Input Ground Truth Output Photo

Figure 2.4: Example crop from testing data. First row: Robot approaching
the obstacle in the hallway. The scale is in meters. Yellow pixels are walls, dark
blue denotes a floor an light blue blob in the middle is the obstacle. Second
row: Robot in the experimental mine has noisy and missing data on the floor,
our network fill the gaps.

way as in previous methods. Then we connect the computational graphs of
both networks hy and g, and train only 6 parameters by backpropagating
the pose-predicting errors of g,, and reconstruction errors of hy. In particular
we minimize the weighted sum £,.(h, hy) + £,(¢, h) + Lo(h, hy).

r+kkt: Method corresponds to learning with KKT-loss (Section [2.1.2.2).
The pre-training procedurei is the same, the final training minimizes weighted
sum: L,(h,hy) + Ly (¢, h) + Lo(h, hy).

errors li r r+p r+kkt
[33)(32] [33][4][32] (Sec2.1.2.3) (Secl2.1.2.2)
T roll [rad] 0.113  0.077 0.075 0.073
7 Dpitch [rad] 0.075  0.069 0.065 0.064
S 2 [m] 0.067  0.049 0.072 0.057
roll [rad|] 0.140  0.082 0.078 0.075
—  pitch [rad] 0.191  0.089 0.072 0.071
® 2 [m) 0.140  0.080 0.082 0.068
heightmap [m]  0.202  0.118 0.096 0.089

Table 2.1: Mean average terrain reconstruction errors and pose estimation errors
for rigid terrain reconstruction.

B Evaluation and discussion

Strictly rigid terrains. This experiment demonstrates the ability of proposed
methods to reconstruct the heightmaps and predict poses from sparse inputs
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2.1. Self-supervised learning of pose consistent terrain reconstruction

errors li T r+p r+kkt
(Sec2.1.2.3) (Secl2.1.2.2)
< roll [rad] 0.089 0.084 0.056 0.048
5 pitch [rad] 0.075 0.064 0.048 0.042
gz [m] 0.145 0.142 0.056 0.045
5 heightmap*[m]  0.124 0.131 0.057 0.059
roll [rad] 0.093 0.098 0.063 0.057
—  pitch [rad] 0.071 0.084 0.051 0.044
~ 7 [m] 0.131 0.134 0.067 0.055
heightmap*[m|]  0.114 0.129 0.075 0.075

Table 2.2: Mean average terrain reconstruction errors and pose estimation errors
on partially flexible terrain

(@) o © @

Figure 2.5: Example crop from testing data. Robot measured an input heightmap
(a) and predicts the supporting terrain (b) using the ResNet features (d). The
scene is shown on image (c¢). Only maximum channel of ResNet features is shown
in the image (d). The heightmaps (a) and (b) are in meters.

on rigid terrains; see Fig.[2.4] for testing examples and for the qualitative results.
Since terrains are assumed to be rigid, we have omitted the "soft terrain
adjustment" part of hy for this experiment (see Fig. . The quantitative
results on the testing data are depicted in Table The first three rows show
Root-Mean-Square error (RMS) on fully-measured heightmaps (i.e. those,
where input heightmap x does not contain any NaNs). The second part
of the table shows how methods perform on all heightmaps, including also
incomplete input heightmaps x.

The results demonstrate that the supporting terrain reconstruction is an
important intermediate step for pose prediction since the linear interpolation
(li) suffers from sparsity of input heightmaps. We can also see that the
backpropagation from ground-truth poses via proposed pose consistency losses
(Lgkt and L), improves the accuracy of the predicted terrains and poses. The
results show that the proposed methods decrease the reconstruction error and
pose predicting error by approximately 20%. Since the ground-truth height
of extremely high and obviously untraversable obstacles such as walls, trees,
or buildings is not well defined (e.g. due to unreliability of ceiling removal
procedure), the heightmap reconstruction error is evaluated only on bins,
where ground-truth height is lower than 0.3m.
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Partially flexible terrains. This experiment evaluates the ability to predict
the shape of supporting terrain on both types of terrain (flexible and rigid);
see Fig. |2.5/ for an example of the testing data. In this particular example, the
sparse input heightmap contains the heights measured by lidar on the high
grass. Since these heights are misleading for predicting the robot pose on
this type of terrain, the height of the grass is suppressed by the "soft terrain
adjustment" part of the network (see Fig. [2.3). The rigid objects such as cars,
stones, trees, roads, or buildings remain at the original level. The results
are summarized in Table 2.2l Since the ground-truth supporting terrain is
generally unknown, we semi-manually annotated a selected subset of terrains,
by fitting the local ground plane between robot-terrain contact points. The
heightmap reconstruction error is denoted with * to point out that it is
computed on the manually annotated subset of the dataset.

The benefit of backpropagating the pose consistency loss to the heightmap
reconstructing network is even more obvious since it allows to predict the
correct height on flexible terrains. Consequently, the pose predicting error
and reconstruction error of proposed methods (r+p and r+kkt) is reduced by
50% with respect to the state-of-the-art methods (r and li). The accuracy of
r—+kkt slightly outperforms r+p, since it is not biased by the g, regressor.

B 2.1.4 Conclusion

We have addressed the problem of learning to predict supporting terrain from
SLAM-optimized 3D maps and robot poses. We have demonstrated that
using the pose-consistency loss, which expresses the physical consistency of
predicted terrain with the robot pose, improves the accuracy of predicted
heightmaps and poses. In particular, two different pose consistency losses have
been proposed: (i) KKT-loss and (ii) pose-predicting loss. The KKT-loss has
been defined as the distance from the necessary conditions of the first principle
model for a given ground-truth pose. The pose-predicting loss, first learns the
pose predicting regressor and then minimizes the distance between predicted
pose and ground-truth pose. In contrast to KKT-loss, the pose predicting
loss requires prior learning and suffers from the regressor bias. The bias is
strong since flexible terrains and lidar-unfriendly surfaces cannot be used for
the training of the regressor. On the other hand, the pose-predicting loss
does not require any inner-loop optimization, therefore its backpropagation
is faster. The experimental comparison shows that the proposed end-to-end
differentiable architecture with proposed pose consistency losses reduces the
error of predicted terrains and robot poses by 50% on the partially flexible
dataset and 20% on the strictly rigid dataset when compared to state-of-the-
art methods. Generalization of the trained model depends on a particular
type of the robot model and a variety of training terrains. We believe that
KKT-loss is directly usable for a broad range of mobile platforms such as
wheeled or skid-steer robots, however its generalization for legged robots is
unclear.

The dataset and codes replicating the reported experiments are made
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2.2. Tactile terrain reconstruction

publicly available. We also provide the fully differentiable implementa-
tion of the KKT-loss, which can be simply included in any future learning
methods through the standard PyTorch interfaces such as
kkt loss(net, robot).backward().

. 2.2 Tactile terrain reconstruction

Advances in robotic technology allow mobile robots to be deployed in gradually
more and more challenging environments. However, real-world conditions
often complicate or even prohibit the adoption of classical approaches to
localization, mapping, navigation, or teleoperation. When rescuers operate a
UGV (unmanned ground vehicle) during joint experiments in the TRADR
projectﬂ which develops novel software and technology for human-robot
teams in disaster response efforts , we have to deal with such problems.
One of the crucial fail-cases is the presence of dense smoke that blocks
camera view and spoils laser measurements, creating false obstacles in front
of the robot (Fig. . Without exteroceptive measurements, classical ap-
proaches to robot SLAM cannot be used. Localization can only be in the
dead-reckoning sense, and the operator of the robot has to rely solely on

3|h‘ctp ://www.tradr-project. eul

Figure 2.6: Search-and-rescue UGV developed as part of the TRADR projects,
equipped with a Point Grey Ladybug 3 omni-directional camera, a rotating SICK
LMS-151 laser range finder and a Kinova Jaco robotic arm, in our case used for
contact exploration of terrain with a wooden stick tool.

25


http://www.tradr-project.eu

2. Terrain reconstruction learning

the maps created up to the point of the sensor outage. In an industrial
environment consisting of many hazardous areas, driving blind can lead to
damage or loss of the robot.

Therefore, we propose a combined hardware and software solution to
predict the profile of terrain underneath and in front of the tracked robot.
The algorithm exploits a prototype of a force sensor array installed inside
a track of the robot, a robotic arm attached to the robot, proprioceptive
measurements from joints and (see Fig. 2.6) an inertial measurement unit
(IMU), and information learned from a dataset of traversed terrains. The
prototype of the force sensor (Fig. 2.8, [2.9) is suitable for tracked robots
and is installed between rubber track and its support, allowing it to serve
as a tactile sensor. The arm is used to measure height of terrain outside
the reach of the force sensor as contact between the arm end-effector and
the terrain. The height of terrain that cannot be measured directly is
estimated by sampling from a joint probability distribution of terrain heights,
conditioned by proprioceptive measurements (geometric configuration of the
robot, torques in joints and attitude of the robot) and learned from a training
dataset consisting of real-world examples of traversed terrains. The estimates
of terrain profile are used as a partial substitute for missing laser range-
finder data that would reveal obstacles or serve as an input our adaptive
traversability solution (Chapter 4).

Our contribution is twofold: we designed a new force sensor suitable for
tracked robots as well as an algorithm that uses proprioceptive and tactile
measurements to estimate terrain shape in conditions that prohibit usage of
cameras and laser range-finders. We extended this solution with robotic arm
to deal with special cases when the predictions have too high uncertainty.

B 2.2.1 Related work

The problem of terrain characterization primarily using proprioceptive sensors,
but also by sonar/infra-red range-finders and by a microphone is discussed
in [46]. The authors exploit neural networks trained for each sensor and
demonstrate that they are able to recognize different categories: gravel, grass,
sand, pavement and dirt surface. Furthermore, they present a concept of
terrain-characteristic curves that establish relationship between currents in
motors driving the main wheels and resulting angular rate of the robot. In
[47] they took a similar approach to train a regression function that maps
from a space of features extracted from inertial sensors to parameters that
compensate slippage in track odometry. In both cases the aim was to improve
localization and control of the robot. This chapter focuses more on the actual
terrain profile prediction, necessary for successful traversal.

Lack of sufficient visual information related to danger of collision with
obstacles is addressed in [48]: decision whether it is safe to navigate through
vegetation is based on wide-band radar measurements since it is impossible to
detect solid obstacle behind vegetation from laser range-finder or visual data.
Artificial whiskers offer an alternative solution; they mimic facial whiskers
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Figure 2.7: Left: UGV robot approaches smoke area. Middle: Example of
visual information that the operator sees inside a cloud of smoke. Right: Output
of the laser range-finder (rainbow-colored point cloud in the right half of the
image). Laser beams are randomly reflected by smoke particles. The resulting
3D point cloud is just noise close to the robot.

of animals and using them as a tactile sensor is a promising way to explore
areas, which are prohibitive to standard exteroceptive sensors. Work of
presents a way to use array of actively actuated whiskers to discriminate
various surface textures. In , similar sensor is used for a SLAM task. Two
sensing modalities—the whisker sensor array and the wheel odometry are used
to build a 2D occupancy map. Robot localization is then performed using
particle filter with particles representing one second long "whisk periods".
During these periods, the sensor actively builds local model of the obstacle
it touches. Unfortunately, design of our platform does not allow using such
whiskers due to rotating laser range-finder.

Relation between shape of terrain that we are interested in and configuration
of the flippers is investigated in . The authors exploit the knowledge
about robot configuration and torques in joints to define a set of rules for
climbing and descending obstacles not observed by exteroceptive sensors.
We investigated this problem in Chapter |4 by introducing the adaptive
traversability algorithm based on machine learning. We collected features
from both proprioceptive and exteroceptive sensors to learn a policy that
ensures safe traversal over obstacles by adjusting robot morphology. Our
motivation coincided with , aiming primarily to lower the cognitive load
of the operator.

On contrary to the approaches exploiting only simple contact sensors, we
extend our sensory suite with a robotic arm for further active perception
for cases if necessary. Related to the active perception, relevant ideas and
techniques come from the field of haptics. The work of proposes to
create models of objects in order to be able to grasp them. The idea is to
complement visual measurements by tactile ones by strategically touching
the object in areas with high shape uncertainty. For this purpose they use
Gaussian processes (GP, ) to express the shape of the object. We take
a similar approach: we choose parts of terrain to be explored by the robotic
arm based on uncertainty of the estimate resulting from the sampling process
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(Sec. 2.2.3)). Probabilistic approach to express uncertainty in touched points
is also described in [55], where only tactile sensors of a robotic hand are used
to reconstruct the shape of an unknown object.

B 2.2.2 Sensors

B Prototype of force sensor

To obtain well-defined contact points with the ground, we decided to take
advantage of the flippers that can reach in front of the robot and are designed
to operate on dirty surfaces or sharp edges. The original mechatronics of
the robot allows to measure torque in flipper servos and thus detect physical
contact between flippers and the environment. To be able to locate the contact
point on the flipper exactly, we designed a thin force sensor between the rubber
track and its plastic support (see Fig. . Since it is a first prototype,
we use it only in one flipper and consider only symmetrical obstacles or steps.
The sensor construction is a sandwich of two thin stripes of steel with FSR
402 sensing elements between them which allows the rubber track to slide
over it while measuring forces applied onto the track. There are six force
sensing elements; the protecting sheet of steel distributes the force among
them, the sensor is thus sensitive along its whole length.

The FSR 402 sensing elements are passive sensors that exhibit decrease in
resistance with increasing force; the force sensitivity range is 0.1 — 10 N. To
measure the resistance, we connect them in series with a fixed reference resistor
forming a voltage divider. We apply 5V to this divider and measure voltage
on the reference resistor. We use an analog-to-digital converter expansion
board for the Raspberry Pi computer to read the six voltages. We calibrate
the voltage values for initial bias caused by the sandwich construction.

Fig. shows three examples of the sensor readings. The first case
consists of a flipper touching flat floor. Although one would expect to see
more or less equal distribution of the contact force along the flipper track,
the torque generated by the flipper actually lifts the robot slightly and thus,
most of the force concentrates at its tip (element n. 6). Compare this case

Figure 2.8: Prototype of the flipper force sensor: array of six sensing elements
(FSR 402) is covered by a stripe of steel, forming a thin sensor that fits between
the rubber track and the plastic track support. The stripe of steel protects the
sensors from the moving rubber track and distributes measured force amongst
them.
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Force sensing elements Analog-to-digital converter

+5V
FSR 402
) 12C .
ADC Pi Plus Raspberry Pi 2B
R1 10k

Figure 2.9: Top: The sensor mounted to the plastic track support. Bottom:
The sensing elements are passive sensors that exhibit decrease in resistance with
applied force. For each sensing element, we use a reference resistor to form
a voltage divider; we obtain voltage inversely proportional to the resistance of
the FSR 402 elements.

with the third one, where the pose of the robot prohibits the lifting effect,
and we therefore see the expected result. The second case (middle) shows an
example of a touch in one isolated point.

B Robotic arm

The UGV is equipped with a Kinova Jaco robotic armﬁ7 see Fig. left. It is
a 6-DOF manipulator (with one extra DOF in each finger) capable of lifting
1.5 kg. For our approach, it is used for tactile exploration of surroundings up
to cca. 50 cm around the robot. For the terrain sensing, robotic arm holds
a tool with a wooden stick—this setup protects its fingers from being broken
when pushing against ground. It also allows the robot to measure the height
of terrain in a chosen point by gradually lowering the arm until upsurge of
actuator currents indicates contact with ground (there are currently no touch
sensors) [56]. Accuracy of the measurement is 3cm (standard deviation).
However, the process of unfolding the arm, planning and execution of the

Shttp://www.kinovarobotics.com/service-robotics/products/robot-arms

29



2. Terrain reconstruction learning

(9]

(6]
[9)]

N
IS
IN

w
w
w

n
n
n

-
-
-

Sensor element output (5 units =~ 10N)

o

Sensor element output (5 units ~ 10N)

o

Sensor element output (5 units =~ 10N)

o

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Sensor element number Sensor element number Sensor element number
B I 3 5 NSAA

#1 #6

Figure 2.10: Examples of the force sensor readings. Top: raw readings of each
sensing element, only corrected for bias. Bottom: the photos of the moments
of the acquisition of the reading.

desired motion and finally folding back to home position can easily take 45s.
Therefore, it is practical to use the arm for this purpose only in situations
when the gain from the additional information overweights the cost of time
spent to get it.

B 2.2.3 Terrain shape reconstruction

When robot is teleoperated operator’s awareness is based on camera images
and the map. In the presence of smoke, both of these modalities are useless,
see output of the operator console in the presence of smoke shown in Fig.
We propose active tactile exploration mode (ATEM), in which flippers and
robotic arm autonomously explores the terrain shape in close vicinity of the
robot. Estimated terrain shape and expected reconstruction accuracy are
eventually displayed to the operator.

If ATEM is requested by the operator, robot first adjusts flippers to press
against the terrain and capture proprioceptive measurements. Then the initial
probabilistic reconstruction of the underlying terrain shape is estimated from
the captured data. If the reconstruction is ambiguous, the robotic arm explores
the terrain height in the most inaccurate place. Eventually, the probabilistic
reconstruction is repeated. As a result, reconstructed terrain shape with
estimated variances is provided. The ATEM procedure is summarized in
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2.2. Tactile terrain reconstruction

Algorithm [2. The rest of this section provides detailed description of particular
steps.

Algorithm 2: Active tactile exploration mode for terrain shape
reconstruction.
Variables: h - vector of terrain bin heights,
v - vector of height variances,
s - vector of proprioceptive measurements.
while ATEM is requested do
stop__robot;
// Invoke flipper exploration mode
while torque_in_ front_ flippers < threshold do
L push_ flippers_down;

s = capture_ proprioceptive_ measurements();
// Perform kinematic reconstruction

[h, v] = kinematic_ reconstruction(s);

// Perform probabilistic reconstr.

[h, v] = probabilistic_ reconstruction(h, v, s);
// Invoke arm exploration

if any(v > threshold) then

[h,v] = arm__exploration(h, v);
L [h, v] = probabilistic_ reconstruction(h, v, s);

move_forward;

B Flipper exploration mode

As soon as the ATEM is requested, the robot halts driving and adjusts angles
of front flippers towards ground until they reach an obstacle or the ground.
They keep pressing against it by defined torque while vector of proprioceptive
measurements s is captured. We measure: (i) pitch of the robot (estimated
from IMU sensor), (ii) angles of flippers, (iii) currents in flipper engines, and
iv) 6-dimensional output of the force sensor.

B Kinematic reconstruction

The terrain shape is modeled by Digital Elevation Map (DEM), which consists
of eleven 0.1 m-wide bins. If there is only one isolated contact point sensed by
the force sensor and the force surpasses experimentally identified threshold
(see Fig. 2.10, second case), the height h; of the terrain in the corresponding
bin ¢ is estimated by a geometric construction from known robot kinematics,
using the attitude of the robot, configuration of joints and the position of the
contact point on the flipper. Variance v; for the corresponding force sensor is
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set to an experimentally estimated value. The remaining h; and v; values
are set to non-numbers.

B Probabilistic reconstruction

In the probabilistic reconstruction procedure, the vector of heights h and
the vector of variances v are estimated by the Gibbs sampling [57]. Let us
denote the set of all bins J and the set of all bins in which the reconstruction
is needed by I (i.e. those which height was not estimated in the kinematic
reconstruction procedure or measured by the robotic arm). We use the Gibbs
sampling to obtain height samples h’}, k=1...K from the joint probability
distributions p(h;/h NI»8) of all missing heights hy. Missing heights h; are
reconstructed as the mean of generated samples, variances vy are estimated
as the variance of samples.

In the beginning, the missing heights h; are randomly initialized. The
k-th sample h'} is obtained by iterating over all unknown bins ¢ € I and
generating their heights h¥ from conditional probabilities p(h;|h 7\i»S)- The
conditional probability is modeled by Gaussian process |53, [54) 58] with
a squared exponential kernel.

To train the conditional probabilities, we collected real-world trajectories
with i) sensor measurements s* and ii) corresponding terrain shapes h*
estimated from the 3D laser map for v = 1...U. The i-th conditional
probability p(h;|h \;,s) is modeled by one Gaussian process learned from the
training set {[(hb\i, shHT, hi],..., [(hg\i, sY)T, hY]}.

Modeling the bin height probabilities as normal distributions is a require-
ment laid by the Gaussian process. However, it allows samples of the bin
height that collide with the body of robot, which is of course physically
impossible. We propose to use Gaussian distribution truncated by known
kinematic constraints, in which the samples are constrained by the maximal
height that does not collide with the body of the robot. We discuss impact
of this modification in the Section [2.2.4L

B Active arm exploration

We use the robotic arm to measure the height of the terrain in bins the flippers
cannot reach. The measurement taken by the robotic arm is reasonably
accurate and precise but in its current state it takes about 45s to complete.
If the probabilistic reconstruction contains bins with variance v higher than
a user-defined threshold, the robotic arm is used to measure the height in
the most uncertain bin, i.e. the bin j = argmax; v;. The height sensed in
the given bin is then fixed and the probabilistic reconstruction process is
repeated.

Bl 2.2.4 Experiments

In qualitative experiments, we focus on typical cases of terrain profile shapes
and discuss performance of different settings of our algorithm. In quantitative
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experiments, we present performance statistics over the whole testing dataset.

The training dataset consists of 28 runs containing driving on flat terrain,
approaching obstacles of two different heights, traversing them and descending
from them back to flat ground. Shape of obstacles selected for the dataset
reflects the industrial accident scenario of the TRADR project - the environ-
ment mostly consists of right-angle-shaped concrete and steel objects. From
the recorded runs, we have extracted approximately 1400 individual terrain
profile measurements for training. The whole training dataset was recorded
indoors on flat hard surfaces. The testing dataset was recorded outdoors
and combines uneven grass, stone and rough concrete surfaces. It contains
more complex obstacles with various heights (different from those seen in
the training dataset). The testing dataset consists of more than 300 terrain
profiles with the corresponding sensory data. Ground truth necessary for
training and testing was created manually by sampling scans from the laser
range-finder recorded during the experiments.

We compare four different algorithms for terrain profile prediction. The base-
line approach [59] uses only the IMU sensor and angles of flippers, we call
it PA (pitch + angle of flippers) for short. The second setup uses the same
data and adds the probability of terrain height being adapted in the way
described in Section [2.2.3. If the sampled height collides with the robot, the
sample is set to the maximal possible height that is not in collision. The
approach is called PAc (pitch + angle of flippers; constrained). The third
approach adds the flipper force sensor; measured data are used in two ways.
If the force measured by a sensor element exceeds a threshold (experimentally
set on 2 units), then the height of the bin is computed from kinematics
of the robot (pitch and flipper angles and position of the sensor element)
and the bin is fixed and excluded from the Gibbs sampling step. It should
be noted however, that the measured forces are used even if they are not
bigger than the threshold — they are part of the proprioceptive data s. The
approach is called as PAFc (pitch + angle of flippers + flipper force sensor;
constrained). The fourth approach adds direct terrain measurement: we
simulate use of the robotic arm for measurements the terrain height in bins
with high uncertainty [56]. The fourth approach is called as PAFAc (pitch +
angle of flippers + flipper force sensor + robotic arm; constrained).

B Qualitative Evaluation

In this section we present typical terrain profiles and robot actions: flat
ground, two steps with different height, climbing up a step and stepping
down of a step. We compare performance of two algorithms: i) PAc uses the
kinematic constraints when sampling sampling but does not use the force
sensors (light blue line in the plots) ii) PAFc algorithm which uses the force
sensors (green line and bars). The last two bars marked yellow in order to
emphasize the predictions are learnt from training dataset and we do not have
enough information to correct the predictions from the sensing by flippers. We
use mean of the (Gibbs) samples as the predicted value (connected by lines)
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and 0.1 and 0.9 quantiles for displaying dispersion of samples (errorbars).
The point (0, 0) coincides with the location of the IMU sensor inside the robot
body. The depicted sketch of the robot: the pitch is estimated by IMU,
flipper angle is directly measured. When the robot lies on a flat ground, Fig.
2.11], contact point is sensed by the sixth element. The force measurement
reduces uncertainty mainly in positions 0.3 — 0.7 m.
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Figure 2.11: Left: photo of the robot on a concrete ground. Middle: measured
forces. Right: terrain reconstruction.

Climbing up a step cases are depicted in Fig. The higher 0.28 m step
obstacle is on top. The fifth sensor element measures the force that is bigger
than threshold and the height in the bin 0.4 is fixed and not sampled. Note
that algorithm PAc which does not use force sensor cannot predict the exact
edge location. This fact is indicated by big dispersion of samples in bins 0.3
and 0.4. The second situation shown in Fig. is the lower step. The
height of the lower step 0.2 m was correctly measured by the sixth element of
the force sensor.
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Figure 2.12: Top: 0.28 m step. Bottom: 0.2cm step. Note the reduced
uncertainty for the PAFc — green line and errorbars.

Climbing up and stepping down cases are displayed in the Fig. [2.13] Vari-
ances in the bins that are underneath the robot are high because we do not
have enough information to estimate the correct heights. Still, the means are
correct due to models learnt from the training data.
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Figure 2.13: Top: climbing up a step. Bottom: stepping down of a step.

B Quantitative Evaluation

At first, we measure the direct effect of the force measurement on the accuracy
of the height estimates. The graph on Fig [2.14}eft, shows the height error
frequency of the DEM-bins that are underneath the front flipper. Note that
the attribute “underneath the front flipper” is not fixed, it depends the flipper
angle. The force sensor indeed improves the accuracy over the using flipper
angle only. The second experiment studies the statistics for all the DEM-bins
individually, see Fig [2.14}right. Adding the kinematic constraint ¢ naturally
improves the estimates of the bins underneath the robot body (—0.3...0.2).
Using the force sensors (PAFc) improves height estimates of the DEM-bins
underneath the front flipper (0.3...0.5). The bins in front of the flippers, i.e.
(0.6 and 0.7) are directly measurable only by the arm exploration. It is thus
obvious that including the measurement by arm (PAFAc) has the dominant
effect.
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Figure 2.14: Left: Evaluation of reconstruction quality in the bins that are under
the flippers. Right: Quantitative evaluation of terrain profile reconstruction —
for all the DEM bins. Median, 1st quartile and 3rd quartile of errors are shown
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2. Terrain reconstruction learning

B 2.2.5 Conclusion

We demonstrated a combined hardware and software solution that enhances
sensor suite and perception capabilities of our mobile robot. We focused our
efforts on enabling proprioceptive terrain shape prediction for cases when
vision and laser measurements are unavailable or deteriorated (such as in
presence of a dense smoke). To evaluate our proposed solution experimentally,
we designed and compared four algorithms—four possible approaches for pro-
prioceptive terrain shape reconstruction: simple kinematics based approach,
constrained kinematics, constrained kinematics with force sensors, and con-
strained kinematics with both force sensors and robotic arm—intended for
special cases, where terrain prediction reaches very high uncertainty. From
the presented qualitative and quantitative experimental evaluation we can
clearly see that enhancing the sensor suite with force sensor array proves to
be superior. The proposed algorithm, which combines Gaussian processes
followed by Gibbs sampling, was successfully implemented on-board the robot
to process the raw force measurements and perform the actual terrain shape
prediction in a probabilistic manner. We certainly do not claim this is the
only and best way to perform such terrain prediction, but, it definitely serves
as sufficiently robust and accurate proof of concept for intended deployment.
As part of this concept, the integration of robotic arm for active perception
in cases when the prediction based on force sensors is too uncertain proved
to be important.
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Chapter 3

Active perception

The state of the robot environment is typically not fully known. The robot
follows the policy that leads to the objective defined by the task and collects
the additional data from the environment that helps to achieve the goal. The
special case, when the objective is obtaining knowledge of the environment, is
called active perception. Consider time-critical scenarios such as autonomous
driving or search-and-rescue missions. In such scenarios, if the sensor’s field
of view is limited or the collected data are sparse, we have to select which
data to collect to get the most information about the surrounding. We are
proposing active perception methods within this chapter.

In Section 3.1 we propose an active perception method for depth sensors,
which allow individual control of depth-measuring rays, such as the newly
emerging solid-state lidars. The method simultaneously (i) learns to recon-
struct a dense 3D occupancy map from sparse depth measurements, and (ii)
optimizes the reactive control of depth-measuring rays. To make the first
step towards the online control optimization, we propose a fast prioritized
greedy algorithm, which needs to update its cost function in only a small
fraction of possible rays. An experimental evaluation on the subset of the
KITTI dataset demonstrates significant improvement in the 3D map accu-
racy when learning-to-reconstruct from sparse measurements is coupled with
the optimization of depth measuring rays. The Section [3.1]is based on the
previously published work "Learning for Active 3D mapping", which was
published on IEEE International Conference on Computer Vision (ICCV) [4].
This conference has an A* CORE Rank and average acceptance rate 25%.
Moreover this publication was accepted for the oral presentation where the
acceptance rate was 2.6%.

Section [3.2] covers our work on the active perception problem of victim
segmentation during a search-and-rescue exploration mission. The robot
is equipped with a multi-modal sensor suite consisting of a camera, lidar,
and pan-tilt thermal sensor. The robot enters unknown scene, builds 3D
model incrementally, and the proposed method simultaneously (i) segments
the victims from incomplete multi-modal measurements and (ii) controls the
motion of the thermal camera. Both of these tasks are difficult due to the
lack of natural training data and the limited number of real-world trials. In
particular, we overcome the absence of training data for the segmentation
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3. Active perception

task by employing a manually designed generative model, which provides the
semi-synthetic training dataset. The limited number of real-world trials is
tackled by self-supervised initialization and optimization-based guiding of
the motion control learning. In addition to that, we provide a quantitative
evaluation of the proposed method on several real testing scenarios using the
real search-and-rescue robot. We also provided a dataset which will allow for
further development of algorithms on the real data. The Section |3.2 is based
on the submission "Simultaneous Exploration and Segmentation for Search
and Rescue" [2] that was published in Journal Field of Robotics (Q1 journal
with impact factor 3.77).

B 3.1 Active 3D mapping

Development of autonomous vehicles such as self-driving cars or ground robots
has attracted substantial attention of the robotics community in the last few
years. One of the reasons is that an 3D perception, which is an essential
component for many fundamental capabilities such as emergency braking,
predictive active damping or self-localization from offline maps [60], has finally
become accurate enough.

All autonomous vehicles require a sensor providing high resolution and
long range 3D measurements. Since state-of-the-art rotating lidars are very
expensive, heavy and contain moving parts prone to mechanical wear, sev-
eral manufacturers have announced the development of cheaper, lighter,
smaller and motionless solid-state lidars (SSL), which should become avail-
able soon [61]. In contrast to rotating lidars, the SSL uses an optical phased
array as a transmitter of depth measuring light pulses. Since the built-in
electronics can independently steer pulses of light by shifting its phase as it is
projected through the array, the SSL can focus its attention on the parts of
the scene important for the current task. Task-driven reactive control steering
hundreds of thousands of rays per second using only an on-board computer
is a challenging problem, which calls for highly efficient parallelizable algo-
rithms. As a first step towards this goal, we propose an active mapping
method for SSL-like sensors, which simultaneously (i) learns to reconstruct
a dense 3D vozel-map from sparse depth measurements and (ii) optimize
the reactive control of depth-measuring rays, see Fig. 3.1, The proposed
method is evaluated on a subset of the KITTI dataset [62], where sparse
SSL measurements are artificially synthesized from captured lidar scans, and
compared to a state-of-the-art 3D reconstruction approach [18§].

The main contribution lies in proposing a computationally tractable
approach for very high-dimensional active perception task, which couples
learning of the 3D reconstruction with the optimization of depth-measuring
rays. Unlike other approaches such as active object detection [63] or segmen-
tation [64], SSL-like reactive control has significantly higher dimensionality
of the state-action space, which makes a direct application of unsupervised
reinforcement learning [63] prohibitively expensive. Unlike the active SLAM,
we are mostly interested in a local 3D map, which allows for reactive control
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Figure 3.1: Iteratively learned deep convolutional network reconstructs local
dense occupancy map from sparse depth measurements. The local map is
registered to a global occupancy map, which in turn serves as an input for the
optimization of depth-measuring rays along the expected vehicle trajectory.

of the vehicle, rather than the global map which would require global motion
rectifications such as loop closures. In such a short horizon, the motion
estimated from odometry, IMU and GPS is sufficiently accurate, therefore
localization is not an issue. In contrast to the discriminative voxel reconstruc-
tion approaches, the map being reconstructed has also significantly higher
dimensionality. Keeping the on-board reactive control in mind, we propose
prioritized greedy optimization of depth measuring rays, which in contrast to
a naive greedy algorithm re-evaluates only 1/500 rays in each iteration.
The 3D mapping is handled by an iteratively learned convolution neural
network (CNN), as CNNs proved their superior performance in . The
iterative learning procedure stems from the fact that both (i) the directions
in which the depth should be measured and (ii) the weights of the 3D re-
construction network are unknown. We initialize the learning procedure by
fixing the sparse depth measurements in randomly generated directions. The
sparse depth measurements input the learning of the 3D mapping network,
which estimates the probability of each particular voxel being occupied. The
iterative learning then fixes the weights of the 3D mapping network and uses
the expected reconstruction (in)accuracy in each voxel to optimize directions
of all depth-measuring rays along the expected vehicle trajectory. We cannot
directly reconstruct the map on the optimized depth measurements, because
the training distribution of the 3D mapping network does not correspond to
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3. Active perception

the one obtained by the planning. In order to reduce the training-planning
discrepancy, the mapping network is re-learned on optimized sparse measure-
ments and the whole process is iterated until it converges.

B 3.1.1 Related work

Active perception has been widely studied in many robotics applications
ranging from exploration and active SLAM [66] to active object detection [63]
and segmentation [64]. In contrast to these applications, the active SSL-
mapping has significantly higher dimensionality of the action space, which
makes a direct application of known approaches such as unsupervised rein-
forcement learning [63] prohibitively expensive. Unlike the active SLAM,
we are mostly interested in a local 3D map, which allows for reactive con-
trol of the vehicle, rather than the global map which would require global
motion rectifications such as loop closures. In such a short horizon, the
motion estimated from odometry, IMU and GPS is sufficiently accurate,
therefore localization is not an issue. In contrast to the discriminative voxel
reconstruction approaches, the map being reconstructed has also significantly
higher dimensionality. Nevertheless we follow the main paradigm, which
achieved state-of-the-art performance in the most of the active perception
tasks: discriminative learning of the target perception task coupled with the
active component.

A generative model proposed by [65], termed Deep Belief Network, learns
joint probability distribution p(x,y) of complex 3D shapes x across various
object categories y. Their model assumes that all cameras are registered in
a common reference frame so that 2.5D images can be converted to a 3D
occupancy grid (30 x 30 x 30 voxels). The authors suggest to use the model for
Next-Best-View prediction via rendering view hypotheses by Gibbs sampling
and selecting the view maximizing mutual information between class label y
and the newly observed voxels conditioned on current observation.

End-to-end learning of stochastic motion control policies for active object
and scene categorization is proposed by [63]. Their CNN policy successively
proposes views to capture with RGB camera to minimize categorization
error. The authors use a look-ahead error as an unsupervised regularizer on
the classification objective. Andreopoulos et al. [67] solve the problem of
an active search for an object in a 3D environment. While they minimize
the classification error of a single yet apriori unknown voxel containing the
searched object, we minimize the expected reconstruction error of all voxels.
Also, their action space is significantly smaller than ours because they consider
only local viewpoint changes at the next position while the SSL planning
chooses from tens of thousands of rays over a longer horizon.

B 3.1.2 Overview of the active 3D mapping

In this section we introduce notation and give an overview of the active
mapping pipeline depicted in Fig. [3.1. We assume that the vehicle follows a
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3.1. Active 3D mapping

known path consisting of L discrete positions and a depth measuring device
(SSL) can capture at most K rays at each position. The set of rays to be
captured at position [ is denoted J;.

We denote Y the global ground-truth occupancy map, Y its estimate, and
X the map of the sparse measurements. All these map share common global
reference frame corresponding to the first position in the path. For each of
these maps there are local counterparts y;,¥;, and x;, respectively. Local
maps corresponding to position [ all share a common reference frame which
is aligned with the sensor and captures its local neighborhood. The global
ground-truth map Y is used to synthesize sensor measurements x; and to
generate local ground-truth maps y; for training.

The active mapping pipeline, consisting of a measure-reconstruct-plan loop,
is depicted in Fig. [3.1] and detailed in Alg. [3. Neglecting sensor noise, the set

Algorithm 3: Active mapping

1. Initialize position [ < 0 and select depth-measuring rays randomly.
2. Measure depth in the directions selected for position [ and update
global sparse measurements X and dense reconstruction Y with

these measurements.

3. Obtain local measurements x; by interpolating X.

4. Compute local occupancy confidence §; = hy(x;) using the mapping
network hy.

5. Update global occupancy confidence Y« Y+ Vi

6. Plan depth-measuring rays along the expected vehicle trajectory
over horizon L given reconstruction Y.

7. Repeat from line 2 for next position [ < [ + 1.

of depth-measuring rays obtained from the planning, the measurements x;,
and the resulting reconstruction Y can all be seen as a deterministic function
of mapping parameters # and Y. If we assume that that ground-truth maps
Y come from a probability distribution, both learning of § and planning of
the depth-measuring rays approximately minimize common objective

Ev{L(Y,Y(0,Y))}, (3.1)

where £(Y,Y) = 3, w;log(1 + exp(—Y;Y;)) is the weighted logistic loss,
Y; € {-1,1} and Y; € R denote the elements of Y and Y, respectively,
corresponding to voxel 7. In learning, w; > 0 are used to balance the two
classes, empty with Y; = —1 and occupied with Y; = 1, and to ignore the voxels
with unknown occupancy. We assume independence of measurements and
use, for corresponding voxels 4, additive updates of the occupancy confidence
Vi « Vi + hi(x) with hi(x;) = log(Pr(Y; = 1|x;)/Pr(Y; = —1|x;)). Pr(Y; =
1]x;) denotes the conditional probability of voxel i being occupied given
measurements x; and o(Y;) = 1/(1 4 e~¥) is its current estimate.
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B 3.1.3 Learning of reconstruction network

The learning is defined as approximate minimization of Equation [3.1. Since
(i) the result of planning x; (6,Y) is not differentiable with respect to 6 and
(ii) we want to reduce variability of training data', we locally approximate
the criterion around a point 6° as

Ev{>_ L(yi, ho(x,(6",Y)))} (3.2)
l
by fixing the result of planning in x;(°,Y). We also introduce a canonical
frame by using the local maps instead of the global ones, which helps the
mapping network to capture local regularities. The learning then becomes
the following iterative optimization

0" = arg meinEY{Z L(yi,ho(xa(6" 1Y)}, (3.3)
.

where minimization in each iteration is tackled by Stochastic Gradient Descent.
Learning is summarized in Alg. [4l.

Algorithm 4: Learning of active mapping

1. Initialize t +— 0 and obtain dataset Dy = {(x;,y;)}; by running the
pipeline with the rays being selected randomly, instead of using the
planner.

2. Train the mapping network on D; to obtain hg: with parameters 6?.

3. Obtain D1 = {(x;(6%,Y),y;)}; by running Alg. 3| and using hg: for
mapping.

4. Set t < t+ 1 and repeat from line 2 until validation error stops
decreasing.

Note, that in order to achieve (i) local optimality of the criterion and
(ii) statistical consistency of the learning process (i.e., that the training
distribution of sparse measurements x; corresponds to the one obtained by
planning), one would have to find a fixed point of Equation|3.3. Since there are
no guarantees that any fixed point exists, we instead iterate the minimization
until validation error is decreasing.

The mapping network consists of 6 convolutional layers with 5 x 5 kernels
followed by linear rectifier units (element-wise max{z,0}) and, in 2 cases, by
max pooling layers with 2 x 2 kernels and stride 2, see Fig.|3.2l In the end,
there is an fourfold upsampling layer so that the output has same size as
input. The network was implemented in MatConvNet [68].

B 3.1.4 Depth measuring rays planning

Planning at position [ searches for a set of rays J, which approximately
minimizes the expected logistic loss £(Y, hy(x;11)) between ground truth

!We introduce a canonical frame by using the local maps instead of the global ones,
which helps the mapping network to capture local regularities.
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Figure 3.2: Architecture of the mapping network. Top: An example input
with sparse measurements, showing only the occupied voxels. Bottom: The
corresponding reconstructed dense occupancy confidence after thresholding.
Right: Schema of the network architecture, composed from the convolutional
layers (denoted conv), linear rectifier units (relu), pooling layers (pool), and
upsampling layers (deconv).

map Y and reconstruction obtained from sparse measurements x;,, at the
horizon L. The result of planning is the set of rays J, which will provide
measurements for a sparse set of voxels. This set of voxels is referred to as
covered by J and denoted as C(J). While the mapping network is trained
offline on the ground-truth maps, the planning have to search the subset of
rays online without any explicit knowledge of the ground-truth occupancy Y.
Since it is not clear how to directly quantify the impact of measuring a subset of
voxels on the reconstruction hg:(x;4 1), we introduce simplified reconstruction
model ﬁ(J, Y), which predicts the loss based on currently available map
Y. This model conservatively assumes that the reconstruction in covered
voxels i € C(J) is correct (i.e. £(Y;,hi(J,Y)) = 0) and reconstruction of not

covered voxels i ¢ C(J) does not change (i.e. £(Yi,hi(J,Y)) = L(Y;, ;).
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Given this reconstruction model, the expected loss simplifies to:

S LVih(LY) = Y LYY (3.4)

igC(J)

Since the ground-truth occupancy of voxels is apriori unknown, neither the
voxel-wise loss nor the coverage are known. We model the expected loss in
voxel 7 as

A A

L(Y;,Y;) ~ EENB(U(YQ))ﬁ(Yia Yi) = H(B(U(ﬁ)» = &, (3.5)

where H(B(p)) is the entropy of the Bernoulli distribution with parameter p,
denoting the probability of outcome 1 from the possible outcomes {—1,1}.
The vector of concatenated losses ¢; is denoted e.

The length of particular rays is also unknown, therefore coverage C(J) of
voxels by particular rays cannot be determined uniquely. Consequently, we
introduce probability p;; that voxel ¢ will not be covered by ray j € J. This
probability is estimated from currently available map Y as the product of
(i) the probability that the voxels on ray j which lie between voxel ¢ and
the sensor are unoccupied and (ii) the probability that at least one of the
following voxels or the voxel ¢ itself are occupied. If ray j does not intersect
voxel ¢, then p;; = 1. The vector of probabilities p;; for ray j is denoted p;.
Assuming that rays J are independent measurements, the expected loss is
modeled as €' [jes Pj-

The planning searches for the set J = J; U--- U Jr, of subsets Jy...Jp
of depth-measuring rays for the following L positions, which minimize the
expected loss, subject to budget constraints |J;| < K,...|Jp| < K

J* = argmin e [[pj, st |l < K,...|J1| <K, (3.6)
jeJ

where |.J;| denotes cardinality of the set J;.

This is a non-convex combinatorial problem? which needs to be solved
online repeatedly for millions of potential rays. We tried several convex ap-
proximations, however the high-dimensional optimization has been extremely
time consuming and the improvement with respect to the significantly faster
greedy algorithm was negligible. As a consequence of that, we have decided
to use the greedy algorithm. We first introduce its simplified version (Alg. [5)
and derive its properties, the significantly faster prioritized greedy algorithm
(Alg. 6) is explained later.

We denote the list of available rays at position [ as V;. At the beginning,
the list of all available rays is initialized as follows V =V, U---U V. Alg. |5
successively builds the set of selected rays .J. In each iteration the best ray
j* is selected, added into J and removed from V. The position from which
the ray j* is chosen is denoted [*. If the budget K of [* is reached, all rays
from Vj+ are removed from V.

2In our experiments, the number of possible combinations is greater then 102°°°.
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In order to avoid multiplication of all selected rays at each iteration, we
introduce the vector b, which keeps voxel loss. Vector b is initialized as b = €
and whenever ray j is selected, voxel losses are updated as follows b = b © pj,
where ® denotes element-wise multiplication.

Algorithm 5: Greedy planning

Require: Set of available rays V' and budget K
J+0 > Initialization

b+ €

while =(V = () do

J* ¢ argminjecy prj > Add the best ray
J+— Juj*
b <~ b ® p; > Update voxel costs
V<« V\j* > Remove j* from V
if |J;«| = K then

| V< V\V- > Close position

Return: Set of selected rays J

B 3.1.5 Prioritized greedy planning

In practice we observed a significant speed up of the greedy planning (Alg. [5)
by imposing prioritized search for argmin; prj. Namely, let us denote
A? the decrease of the expected reconstruction error achieved by selecting
ray j in iteration k, A? = Zi(bf_l -0k =3, bf_l(l — pij), and show
that it is non-increasing. For p;j,p;y € [0,1] and bf_l > 0 it follows that
bffl(l — pij) > bfflpij/(l — pij). Summing the inequalities for all voxels i,
we get

A =0 (1= py) 2 D b iy (1= pyy) = AT (3.7)

% %
for an arbitrary ray j’ selected in iteration k. Note that A? > A;‘?'m for any
a>1.

. e . . k—aj
Now, when we search for j maximizing A? in decreasing order of A; 7,

a; > 1Vj, we can stop once Af > Af,ﬁaj/ for the next ray 7' because none of
the remaining rays can be better than j. Moreover, we can take advantage
of the fact that all the remaining rays including j remained sorted when
updating the priority for the next iteration. The proposed planning is detailed
in Alg. [6l

The number of re-evaluations of A; in Alg. 6 was approximately 500x
smaller than in Alg. |5l Despite the sorting took about a 1/10 of the compu-
tation time, the prioritized planning was about 30x faster and took 0.3s on
average using a single-threaded implementation.
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Algorithm 6: Prioritized greedy planning

Require: Set of rays V = {1,..., N} at positions L, budget K, voxel costs
b, probability vectors p; Vj € V, mapping from ray to position A\: V — L

J+—0VvlielL > No rays selected
Aj—ooVjeV > Force recompute
S+ (1,...,N) > Sequence of ray indices, S(n) denotes the

nth element in the sequence, S(m:n) the subsequence from the mth to the
nth element.
while S # () do
forne (1,...,]5]) do
Asm) b (1 —psm))
if n <|S|AAgm) > Ag(ng1) then
L break
Sort subsequence S(1:n) s.t. Agmy > Agmry1)
Merge sorted subsequences S(1:n —1) and S(n : |S|)
37 S(1), 1" = AT

Jpeo— - U{5*} > Add the best ray
b <+ b ®p;- > Update voxel costs
if |J;<| = K then
| S« S\{j:A(y)=10"} > Close position
else
| S« S\{j*} > Remove j* from S

Return: Selected rays J; at every position [ € L

B 3.1.6 Experiments

B Dataset

All experiments were conducted on selected sequences from categories City and
Residential from the KITTI dataset [62]. We first brought the point clouds
(captured by the Velodyne HDL-64E laser scanner) to a common reference
frame using the localization data from the inertial navigation system (OXTS
RT 3003 GPS/IMU) and created the ground-truth voxel maps from these.
The voxels traced from the sensor origin towards each measured point were
updated as empty except for the voxels incident with any of the end points
which were updated as occupied for each incident end point. The dynamic
objects were mostly removed in the process since the voxels belonging to
these objects were also many times updated as empty while moving. All maps
used axis-aligned voxels of edge size 0.2 m.

For generating the sparse measurements, we consider an SSL sensor with the
field of view of 120° horizontally and 90° vertically discretized in 160 x 120 =
19200 directions. At each position, we select K = 200 rays and ray-trace
in these directions until an occupied voxel is hit or the maximum distance
of 48m is reached. Only the rays which end up hitting an occupied voxel
produce valid measurements, as is the case with the time-of-flight sensors.
Local maps x; and y; contain volume of 64m x 64m x 6.4m discretized into
320 x 320 x 32 voxels.
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Figure 3.3: ROC curves of occupancy prediction from active 3D mapping on test
sets. Left: Random denotes the global occupancy Y obtained by using hgo with
random sparse measurements, Coupled the occupancy obtained by using hys with
the prioritized greedy planning. The voxels which are more than 1m from what
could possibly be measured are excluded, together with the false positives which
can be attributed to discretization error (in 1-voxel distance from an occupied
voxel). Right: Random denotes the local occupancy maps §; obtained by using
hgo, Coupled the maps obtained by using hg:, and Res3D-GRU-8 denotes the
reconstruction obtained by the network adapted from [18].

B Active 3D mapping

In this experiment, we used 17 and 3 sequences from the Residential category
for training and validation, respectively, and 13 sequences from the City
category for testing. We evaluate the iterative planning-learning procedure
described in Sec. [3.1.3. For learning the mapping networks, we used learn-
ing rate @ = 1073(1/8)"/191 based on epoch number i, batch size 1, and
momentum 0.99. Networks hgo, ..., hgs were trained for 20 epochs.

The ROC curves shown in Fig. 3.3 (left) are computed using ground-truth
maps Y and predicted global occupancy maps Y. The performance of the
hgs network (denoted Coupled) significantly outperforms the hys network
(Random), which shows the benefit of the proposed iterative planning-mapping
procedure. Examples of reconstructed global occupancy maps are shown in
Fig. 3.4 Note that the valid measurements covered around 3% of the input
voxels.

B Comparison to a recurrent image-based architecture

We provide a comparison with the image-based reconstruction method of
Choy et al. [18]. Namely, we modify their residual Res3D-GRU-3 network
to use sparse depth maps of size 160 x 120 instead of RGB images. The
sensor pose corresponding to the last received depth map was used for
reconstruction. The number of views were fixed to 5, with K = 200 randomly
selected depth-measuring rays in each image. For this experiment, we used
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Figure 3.4: Examples of global map reconstruction. Top: Sparse measurement
maps X. Middle: Reconstructed occupancy maps Y in form of isosurface.
Bottom: Ground-truth maps Y. The black line denotes trajectory of the car.

20 sequences from the Residential category—18 for training, 1 for validation
and 1 for testing. Since the Res3D-GRU-3 architecture is not suited for
high-dimensional outputs due to its high memory requirements, we limit the
batch size to 1 and the size of the maps to 128 x 128 x 32, which corresponds
to 16 x 16 x 4 recurrent units. Our mapping network was trained and tested
on voxel maps instead of depth images.

The corresponding ROC curves, computed from local maps y; and ¥,
are shown in Fig. (right). Both hgo and hy networks outperforms the
Res3D-GRU-3 network. We attribute this result mostly to the fact that our
method is implicitly provided the known trajectory, while the Res3D-GRU-3
network is not. Another reason may be the ray-voxel mapping which is also
known implicitly in our case, compared to .

B 3.1.7 Conclusion

We have proposed a computationally tractable approach for the very high-
dimensional active perception task. The proposed 3D-reconstruction CNN
outperforms a state-of-the-art approach by 20% in recall, and it is shown
that when learning is coupled with planning, recall increases by additional
8% on the same false positive rate. The proposed prioritized greedy planning
algorithm seems to be a promising direction with respect to on-board reactive
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control since it is about 30x faster and requires only 1/500 of ray evaluations
compared to a naive greedy solution.

B 3.2 Learning for multi-modal active segmentation

An integral part of any search-and-rescue mission is a time-critical search for
potential victims in a disaster area. Typical disaster area contains dangerous
zones in which human rescuers are not allowed to enter - red zones. Explo-
ration of these red zones is usually assured by a teleoperated robot . In
the teleoperated exploration scenario a human operator determines a coarse
exploration path. The robot follows the path and collects a multi-modal
measurements, such as camera, depth and thermal images. Since these mea-
surements are difficult to be processed reliably by a human operator in a
time-critical scenario, the real-time autonomous processing, which allows to
guide operator’s attention and decrease his cognitive load, is highly desirable
functionality . Proposed autonomous processing delivers a concise 3D
semantic map which visualizes topological relations and emphasizes potential
victims, see Fig. Resulting semantic map is critical for further reasoning
and decision-making, therefore its quality is essential.

Since sensors have a limited field of view and the exploration time is
restricted, the resulting coverage of the disaster environment by the sensor
measurements is incomplete, which compromises the accuracy of the resulting
semantic map. We consider the setup in which a robotic platform is equipped
with an omnidirectional camera, a rotation laser scanner (together denoted

LIMITED FOV
THERMAL IMAGE
—

PANORAMIC RGB IMAGE

Figure 3.5: Skid-steer search-and-rescue robot with a panoramic RGBD sensor
consisting of an omnidirectional camera and a rotation laser scanner; Thermal
(T) sensor, with limited narrow field of view mounted on a pan-tilt unit.
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as RGBD sensor) and a pan-tilt thermal camera with a small field of view, see
Fig. 3.5 Since temperature is an essential cue for detecting humans in search
and rescue, a segmentation-friendly control of the pan-tilt unit is needed for
compensating the limited sensor coverage and maintain accurate segmentation.
We proposed active victim segmentation algorithm which simultaneously (i)
segments victims in incomplete RGBDT data and (ii) controls the thermal
camera to minimize segmentation error.

One possible solution is to define a cost function reflecting the expected
error of the semantic map and plan the thermal measurements to mini-
mize it. However, since the dimensionality of the underlying state-action
space is enormous, the real-time (re)planning is prohibitively time-consuming.
Consequently, we propose a novel learnable method, which employs deep
convolutional neural networks (CNNs) for both tasks: (i) the victim detec-
tion (provided by purely segmentation nets), and (ii) the thermal camera
control (determined by a Q-value policy network). Proposed learning method
minimize common objective, therefore segmentation nets are trained to work
well on the temperature measurements provided the policy network, while
the policy network is trained to provide temperature measurements which
maximize the segmentation accuracy.

CNNSs have recently been shown to be a powerful representation for both
the classification and the motion control. However, the success of CNNs is
usually conditioned either by (i) the existence of a huge number of training
examples [71, 72|, or (ii) a careful initialization |73} 74]. Both of these
conditions are difficult to achieve due to the lack of natural training data
and the inherently limited number of trials, which can be performed with
the real robot. In particular, we overcome the absence of training data for
the segmentation task by employing a manually designed generative model,
which provides the semi-synthetic training dataset. The high-dimensionality
of the underlying control problem is tackled by self-supervised initialization
and coverage-planning-based guiding of the motion control learning.

In particular, we first extend Long’s segmentation CNN [73] by depth and
both depth and thermal modalities, and retrain it on our own
human/background-annotated RGBDT dataset. These segmentation CNNs
are further used for self-supervised training of a control sub-network, on
data without any annotation, which estimates potential impact of thermal
measurements on the classification error. The control sub-network is further
extended by sub-sampling and fully connected layers and trained to predict
the long-term impact of possible thermal-camera motions on the classification
error. To train the control CNN efficiently, we propose a guided Q-learning
algorithm, which uses optimal trajectories estimated by a Mixed Integer Lin-
ear Programming (MILP) planner to guide the exploration of the Q-learning
and consequently avoids poor local optima.

The main contribution of this work lies in (i) showing that in contrast to
general reinforcement learning tasks, the active segmentation problem allows
for a self-supervised policy initialization, (ii) introducing coverage-planning-
based guiding of the motion control learning, (iii) conducting quantitative
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3.2. Learning for multi-modal active segmentation

evaluation of the proposed method on several real testing scenarios using
the real search-and-rescue robot, (iv) providing the active search and rescue
dataset which allows further development of algorithms on the real data?.

B 3.2.1 Related work

Real search and rescue missions are discussed in [69]. Due to several reasons,
notably due to extremely harsh conditions and lack of human to robot trust,
the robots were teleoperated in all the successful missions. The victim search
were done by human operators. Rescue scenarios have been simulated for
many years within annual RoboCup events emphasizing the importance [75].
The DARPA Subterranean Challenge®, confirms out that scenaros like this
are still actual and automatic scene understanding or segmentation in real
mission remains largely unsolved challenge.

The problem of active perception from computational perspective was
recently surveyed in [76]. Employing purposive sensing for the task of object
recognition can be dated back to [77], where the authors divided the task
into two subproblems—moving the camera and primary light source to a
position called a standard view of the unknown object, and two-dimensional
recognition problem. With articulated objects in arbitrary pose, as in our
scenario, this decomposition is impractical because the standard view may not
be reachable from the current position or due to possibly large self-occlusions
which may occur even when the standard view is reached.

Many methods have been proposed for selecting the next best view with
respect to the object recognition task at hand. [78] addressed the view
selection itself as a classification problem and proposed a boosting-based
algorithm combining three types of cues, including a similarity measure based
on an implicit shape model. [79] proposed a multi-view classifier based on
an ensemble of random decision trees where the view selection is inherent
in the classification process. The proposed framework was applied to the
task of autonomously unfolding clothes by a robot, addressing the problem
of best view selection in classification, grasp point and pose estimation of
garments. These two approaches, nevertheless, are closely connected to
the classification task with a single object being presented and cannot be
adapted to segmentation of multiple articulated objects in arbitrary poses. [80]
decompose the multi-view object classification task into a set of independent
classification tasks, each dealing with a single image pair. They then use this
pair-wise decomposition in trajectory optimization—they seek a path of a
given length in the corresponding undirected graph of neighboring views which
maximizes estimated cross-entropy scores for unobserved views. After each
new view observed, the scores are updated and the trajectory is re-planned.
Their approach, nevertheless, becomes impractical for longer trajectories,
because the number of pairs increases quadratically with the number of views.

Shubina et al. [81] proposes a strategy for finding a target in a space with

3http://ptak.felk.cvut.cz/tradr/data/human_seg/
4https://www.subtchallenge.com
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unknown inner structure but with known dimensions. The search space is
tessellated into a 3D grid of non-overlapping cubic elements. Also the space
of possible robot position is tessellated as 2D 1 x 1m grid. An operation on
the search space 3D grid consists of taking an image according to camera
(robot) position and orientation and analyzing it to find out where the target
is present. The cost function for the operation includes moving the sensor,
acquiring the data, and running the recognition algorithm, and updating the
grid. A sensed sphere [82] is used to represent the surrounding of the camera.
The global sensor move planning is NP-complete [82] hence, a greedy one-step
where to look and move next planning strategy is proposed.

Andreopoulos et al. [67] share many concepts with Shubina et al. [81],
notably the concept of 3D search space grid, here called target confidence
map. Their work adds an obstacle map and a multi-view visual detector. The
core contribution is a probabilistic update of both the target confidence and
the obstacle map. The planning is greedy—mnext best view and position (of a
humanoid robot) is selected.

The active visual segmentation approach proposed by [64] understands the
activity very much differently from us. The authors propose an automatic
segmentation method given a fixation on an object or a scene part. An initial
fixation is further refined by choosing certain points on the skeleton of the
segmented object.

Semantic segmentation have been traditionally formulated as energy mini-
mization in graphical models, as in |83} 84|, employing approximations both in
learning and inference to maintain tractability. Recently, deep convolutional
neural networks (CNN) achieved competitive results. Long et al. [73] adapt
several classification models for the semantic segmentation task, introducing
skip connections to maintain spatial fidelity of the output. We use their
FCN-32s model as a basis of our multi-modal segmentation models.

A multi-modal human body segmentation was recently proposed by [85].
Their method, nevertheless, relies on background subtraction using a learned
Gaussian mixture model and the camera being static which is not applicable
in our settings. They also present a new RGBDT dataset with annotated human
bodies which is similar to the dataset we published as for the represented
modalities and object of interest. The dataset was used to evaluate a human
body co-segmentation approach proposed in [86], using uncalibrated but
static sensors within indoor scenes. Our dataset, nevertheless, exhibits higher
variability of background scenes and human poses, motivated by search-and-
rescue scenarios.

Paper from Mnih et al. [72] shows method how to control agent using CNN.
They tested it on Atari games where only pixels and game score was given
as an input and action of the agent was an output. They propose slightly
modified Q-learning to learn weights of the CNN. In this work, we show that
training DQN policies can benefit from being provided with guiding samples
obtained from an optimal planner.

Levine et al. [74] also shows how to control a humanoid robot to solve
contact rich manipulation tasks such as screwing a cap onto a bottle. The
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3.2. Learning for multi-modal active segmentation

policy is represented by CNN that maps raw images observations directly
to torques at the robot’s motors. In contrast to [72], [74] we solve active
segmentation task where segmentation error is tightly coupled with reward.

Recently [63] proposed to use the reinforcement learning for active object
and scene categorization, in which a learned CNN policy successively selects
viewpoints of RGB camera to minimize categorization error. In contrast to this
task, we solve the task of active 3D segmentation from incomplete RGBDT data
captured online in a structured 3D environment. Hence, the learned policy
has to infer both (i) the expected segmentation errors and (ii) the occlusions
preventing future acquisition of thermal data. To tackle such complex task
we propose self-supervised initialization and provide optimal trajectories to
guide the reinforcement learning.

B 3.2.2 Theory

The sensory suite of our mobile robot consists of (i) the Point Grey Ladybug 3
panoramic camera providing RGB images, (ii) the SICK LMS-151 laser scanner
on a rotating mount providing depth measurements D and (iii) the thermal
camera Micro-Epsilon thermoIMAGER TIM 160 with a small field of view
mounted on a pan-tilt unit and providing thermal measurements T.° The robot
follows a known short-horizon path consisting of several discrete positions
into an unknown environment. As the robot explores the environment, it
simultaneously builds a 3D voxel map of occupancy and localizes itself within
the map. In addition to that, temperature of some voxels can be measured
by the thermal camera. Our goal is (i) human/background segmentation of
the 3D voxel map from captured RGBDT data and (ii) simultaneous control of
the thermal camera in order to capture such thermal measurements which
facilitate the segmentation the most.

B Measurements and voxel map

The result of the proposed pipeline (see Fig. [3.6) is 3D voxel map, which
accumulates occupancy, temperature and segmentation confidence. At each
position, the voxel map is reprojected into the RGB camera coordinate frame
to create depth and thermal image, respectively, of the same resolution as the
RGB images. Concatenation of the RGB image with depth image D is denoted
by x, the thermal image is denoted by z. Especially, we introduce state
X, which consist of x,z, current viewpoint of the thermal camera and the
position of the robot on the exploration path.

B Human segmentation

The probability of human presence/absence in particular pixels is estimated
by two segmentation networks. The first segmentation network Sy(x) pro-
vides estimates without using any temperature measurements, the second

®The extrinsic camera calibration w.r.t. the laser was obtained by [43].
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Figure 3.6: Learning outline. Human presence/absence in particular pixels
is determined by two segmentation networks Sp(x) and Sy (x,z). Motion of
the thermal camera is controlled by state-action value function network Q. (X).
While learning of the segmentation networks is tackled by SGD (Stochastic
Gradient Descent), learning of the Q-network is guided by the optimal Q-values
provided by the MILP (Mixed Integer Linear Program)-based planner.

segmentation network Sy (x,z) use the available temperature measurements.
Network parameters are denoted by 6 and 1, respectively. Outputs of these
networks, y(0) and y(v), are projected by mapping P onto the existing 3D
voxel map to update the respective probability estimates in the corresponding
voxels, denoted by V() and Y (1).

Motion of the thermal camera is determined by state-action value
function network @, (X) with parameters w, which assigns Q-values
QU (X),...,Q (X) to n discrete control actions. At each state X, the best
available action u* = argmax, Q% (X) is chosen to control the motion of
the thermal camera. The proposed measuring-classification-control loop is
summarized in Alg.

At each position on the exploration path, the thermal camera captures
a single thermal image from a defined viewpoint. Viewpoint at position k
is denoted 4y, (viewpoints outlined as light blue cones in Fig. [3.7-right). We
assume that the motion dynamics of the thermal camera is constrained and
that viewpoint iy is given as iy = f(ix_1,ux), where f is the motion model
and wuy is a control action at position k. Given a fixed training scenario,
resulting voxel segmentation map }7(0, 1,41 ... 1) estimated at position K
is uniquely determined by the segmentation parameters 6, 1) and by the
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3.2. Learning for multi-modal active segmentation

Algorithm 7: The active segmentation algorithm.

1. Capture RGB, D, and T data and update the corresponding 3D voxel
maps.

2. Construct x and z from the RGB camera image and the current
voxel maps of occupancy and temperature.

3. Estimate local pixel-wise human probability
$(1) = Su(x,2),5(0) = Sp(x).

4. Update the corresponding voxel maps Y (¢) and Y (6) using
mapping P.

5. Estimate new control u* = argmax, Q. (X, u).

6. Simultaneously move the robot towards the next position on the
exploration path and the thermal camera by control signal
u* towards the viewpoint to be captured at the next position.

7. Repeat from the beginning.

captured viewpoints i1 ...ix.

Learning is defined as a search for parameters 6, v, and w which minimize
the cross-entropy loss H(Y,Y (0,4,41 .. .ix)) between estimated global voxel
map }7(9, ¥,i1 ...1x) at a final position K and ground-truth voxel map Y
subject to the motion constrains of the thermal camera,

arg in@ir;Z?—l (YU, VACRIRTI iK)) (3.8)
sit.ik = f (ik—1, ur(W)) Yireq,.. K}

where Y, ¥, denotes elements (voxels) of voxel maps Y, Y, respectively,
and initial viewpoint ¢y is a constant assumed to be known in advance. This
optimization problem is approximately solved as successive minimization over
0, v, and w.

Optimization over 3 and 6 is formulated as SGD minimizing of the
cross entropy of pixel-wise updates ;(0), 9;(¢) with respect to pixel-wise
ground-truth y;.

argmginZH (i, 9:(0)) (3.9)

argrrgnZ’H (Yi, 9:(¥)) - (3.10)

B Optimization over w

Let us denote V' the set of all voxels and V (i1, . . ., ix) its subset containing the
voxels visible with the thermal camera in any of the K views iy, ..., ix selected
along the path (see Fig. 3.7, on the right). Resulting voxel segmentation
Y (0,1,41 .. .ix) is composed from Y () and Y (1) as follows:

@), veV(,....ix)
(), v & V(i,... ix)
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Consequently, the optimization over w is simplified as follows:

argmin 30 H (V.. %) + 3 H (Vi Va(0))

vEV(’il,...,ZK) ’U¢V(i1,...,l}()

st iy = f(ig—1,ur(w)) vl~ce{1,.~,K}

—argmin > H (Y, V@) = D H (Y, Vu(0)) + X H (i, Vu(0))

vEV(il,...,iK) ’UGV(’il,...,iK) veV

st ix = f(ik—1,ux(W)) Yirequ,... Kk}

= arg max oA (YL, }%(9)) - H (Yv, Yu(¢)) (3.12)

vEV(il,..‘,iK)

Ay (6,9)

st ip = fli—1,ur(W)) Vieq,... k)

where difference
H (Yo, Vo(0)) = H (Yo, Vo(®) ) = AH, (0, ) (3.13)

denotes the reduction of the cross-entropy loss in voxel v when the temperature
becomes known at this particular voxel—we call this quantity gain. The
motion and budget constraints bind the control uj(w), ..., ux(w) over the
whole horizon K and the optimization cannot be decoupled. Given fixed
segmentation parameters, we learn state-action value function @, (X), which
estimates the expected gain. The guided Q-learning algorithm for optimization
of w is detailed in Section [3.2.3l

Figure 3.7: Left: Panoramic RGB image with segmented humans outlined
by green (RGBD data segmentation) and magenta (RGBDT data segmentation)
contours. The reprojected thermal measurements collected up to the current
time are emphasized by blue overlay. Right: Reconstructed and segmented voxel
map with accumulated thermal measurements displayed in blue color. Light
red denotes the voxels marked as corresponding to human based on RGBD data
only, dark red denotes the voxels marked as human based on the data with
additional temperature measurements. Robot path with positions is denoted by
black arrow with dots and selected thermal viewpoints are outlined by blue cones.
The thermal camera is controlled to maximize the long-term sum of AH.
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3.2. Learning for multi-modal active segmentation

B 3.2.3 Learning of the control network

If (i) the visibility of all voxels in all viewpoints along the robot path is
available in advance, (ii) the gain is known for all voxels, and (iii) the control
signals are discrete, then the optimal control corresponds to the weighted
maximum coverage problem with limited budget and motion constraints.
Such formulation is an instance of the following MILP:

arg max vIAH (1, 0) (3.14)

st. Au>v
Bu=1
Cu<l1
velo,1)V
u e {0, 1} 5N

where A is a sparse binary matrix which captures visibility of the voxels in the
available viewpoints along the planning horizon, B is a sparse binary matrix
determined by the budget constraints (single viewpoint per position), C is
a sparse binary matrix which captures the motion constraints, V' is the number
of voxels in the map, K is the planning horizon (i.e., the number of positions
along the path), N is the number of the available actions (viewpoints). The
result of this optimization are two vectors u and v; vector u specifies control
signal along the path and vector v is an auxiliary variable which denotes
visibility of particular voxels in the thermal camera.

Since an unknown environment is typically explored, neither the map nor
the gain AH, are known in a testing scenario, which makes direct online
optimization of problem (3.14) impossible. On the other hand, complete
voxel maps with corresponding voxel gains are available for the annotated
training sequences. Since a direct optimization of w would require recurrent
estimation of the gain with respect to the considered horizon K, which is both
computationally demanding and prone to get stuck in a poor local minimum,
we instead use MILP to directly optimize the control u on the training
sequences. Optimal Q-values eventually guide the learning of parameters w,
see Sec. 3.2.3.2 for details.

Since the raw sensory measurements are high-dimensional, learning of deep
Q-value network @, (X, u) from randomly initialized weights would require
a huge amount of training samples. To avoid such a demanding training
procedure, we suggest to divide the @, (X) network into two sub-networks:
(i) guwy (x) network which estimates AH from x and
(ii) quw,(AH, X) network which predicts the Q-values from the estimated gain
A7 and state X.

These networks are first trained independently, then concatenated as Q,,(X) =
Quws (9o (%), X) and fine-tuned as the one network (see Fig. 3.8)). Learning of
the Q-value network is summarized in the three following steps.

1. Train gain predicting sub-network g, from supervised and self-
supervised A annotations. In the supervised setting, human/background
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3. Active perception

annotations are available. In such case, AH annotations are just the
difference of cross entropies of segmentation networks (Eq. 3.13). In the
self-supervised setting, we exploit unlabeled RGBDT data. In such a case,
A annotations are approximated as Kullback-Leibler divergence of the
outputs of segmentation networks, see Sec. 3.2.3.1| for details. The g,,,
sub-network predicts the expected reduction of the cross-entropy loss as
a result of measuring temperature at particular pixels.

Train Q-value sub-network q,,(AH, X) by the proposed guided Q-
learning algorithm. The guided Q-learning first use the MILP planner
to estimate optimal trajectories which maximize AH-weighted coverage
of voxels from the explored environment. These trajectories are used
to normalize the Q-values and to guide the exploration. Learned policy
approximates these optimal trajectories and consequently minimize the
segmentation error, see Section |3.2.3.2 for details.

Connect previously trained sub-networks into the final Q-value
network Qu, (X, u) = qu, (guw, (x), X) and fine-tune its parameters w. Note,
that the fine-tuned @), network does not predict the gain AH anymore.

gw1 unQ

ANG. DISTANCES
FROM CURRENT VP | *

REMAINING TIME —

Figure 3.8: Structure of @), network: The policy Qu(X) = qu, (9w, (X), X)
is composed from two subnetworks: (i) gain predicting sub-network g, (x), and
(ii) Q-value sub-network g, (AH, X), with an interconnecting subsampling layer
in the middle.

B 3.2.3.1 Self-Supervised Policy Initialization

Training sequence consists of x and z images. For some of these images hu-
man/background labels y are available, some images are unlabeled. When an-
notations are available, supervised learning of the gain predicting network g,,,
is straightforward. We collect training pairs [x, H (y,y(0))—H (y,¥(¥))],
for fixed parameters 6 and 1, and learn a regression network minimizing the
square loss. In addition to this, we also suggest a self-supervised learning
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3.2. Learning for multi-modal active segmentation

setup, in which arbitrary unlabeled data are used. In this setting, we ap-
proximate the gain using outputs of segmentation networks y(0) and y(¢)
as the expected difference of the cross entropy losses under the best current
estimate (1) of truth labels as follows

By~ n(g:00) {AH (,0)}

=By, B ) 1H (v, 5:(0)) — H (vi, 9:(¥)) }

=H (§i(¥), 9:(0)) — H (9:(¥))

=H (9:(¥)) + Dk (9:(V)[19:(0)) — H (9: (1))

= Dk (i (¥)[19:(0)) (3.15)

where B(p) is the Bernoulli distribution with parameter p, H(p) is the
entropy of such a Bernoulli distribution, and H(p, ¢) and Dgy,(p||q) denote the
cross entropy and Kullback-Leibler divergence, respectively, of the respective
distributions. Predicted gain for a testing image is shown in Fig.

Figure 3.9: Output of gain predicting network g,, (x) estimates the expected
per-pixel gain derived in Eq. (3.15]). Colorbar encodes values of the visualized
gain.

B 3.2.3.2 Coverage-planning-based Guided Q-Learning

Given fixed segmentation networks, we formalize control of the thermal
camera as MDP with the following states, actions, rewards and transition
probability.

State X} is concatenation: Xy = (xg,zk, mg, Z(I,ix), K — k), where
Z(I,ix) denotes the angular distance of all viewpoints I from current view-
point ix, K — k is the remaining number of the positions, my denotes the
thermal masks determining coverage of pixels by temperature for the allowed
viewpoints ¢ € I.

Action uj corresponds to the motion of the thermal camera from the current
viewpoint to the one of discrete viewpoints in the close neighbourhood.
Reward r; for performing the action is given state is equaled to the gain of
newly covered voxels.

Transition probability between states is synthesized from reconstructed
training maps with full thermal measurements, which has been captured
offline.
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We propose guided Q-learning algorithm, which is used for training of (i)
the second sub-network ¢,,, as well as (ii) the whole Q-value network @,
during fine-tuning. Proposed algorithm Alg. |§| successively collects training
transitions from available maps and learns to predict Q-values, which corre-
sponds to the expected gain of covered voxels, when action u is applied in
state X and then controlling optimally.

The guided Q-learning first estimates gain for all voxels. The optimal control
u* of the thermal camera and the optimal gain coverage ¢* is determined
by solving the corresponding MILP instance from the current state. Then
it evaluates the sum of gains ¢’ achievable for all possible controls u’ by
successively applying each control 4’ and solving the corresponding MILP
instance from the following state X’. All these transitions (Xg,u', Q) are
stored in the dataset D. We have considered (and experimentally evaluated,
see Fig. [3.11) three different types of Q-values:

1. raw sum of covered gain-values: Q=d,
2. absolute loss in the sum of covered gain values: Q = ¢’ — ¢*,
3. relative loss in the sum of covered gain values: Q = ¢'/q*.

Eventually, either the optimal control w* or Q-value-driven control
arg max, Q% (Xy) is applied and the process continues from the following
state Xy11. When a sufficient number of transitions is collected, SGD is
performed on weights w of the regression network @, until the validation
error stops decreasing.

In contrast to the standard Q-learning, the guided Q-value network is not
forced to predict the absolute sum of AH which is often loosely connected
with features observed in the current state. Guided Q-learning predicts rather
the expected impact on the optimality. Another advantage stems from guiding
the exploration of the state-action space close to the optimal trajectories. In
the experiments, guiding probability p linearly decreases from 1 towards 0.

Algorithm 8: The guided Q-learning algorithm.

Input: Initial viewpoint ig
for ke {l,...,K} do
(g¢*,u*) <= MILP(X}) # Optimal control from the current state Xj
for v € {1,...,N} do
(X', R') + act(Xy,u') # Apply action u and get reward R’
and the following state X’
q¢ < R+ MILP(X') # Estimate Q-value for doing action u in
state X}
D+« DU (Xk,u’, %)

w u* with prob. p
k arg max,, QU (Xy) with prob. 1 —p
| X1 < act(Xg, ux) w < SGD(Qu, D).
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B 3.2.4 Learning of the Multimodal CNN Models

Convolutional neural networks are expressive models which allow efficient
element-wise prediction for inputs of variable size. They are composed of
multiple processing layers forming a directed acyclic graph. The bottom layer
has the source data as its input, the top layer yields the target prediction or
a task-specific scalar loss for training.

We minimize the loss using stochastic gradient descent (SGD) with Nes-
terov’s accelerated gradient (NAG) [87, [88] which yields the following weight
updates:

Vir1 = pve — aVEl(wi + uvy), (3.16)
Wit = Wi + Vitl, (317)

with w; being the model parameters at iteration ¢ and v; their preceding
update, V/(w) being the gradient of loss function ¢ at w, a > 0 being the
learning rate, and p € [0,1) the momentum coefficient. The segmentation
models use the multinomial logistic loss for training, the regression model
uses the Euclidean loss.

All the models having RGB as input reuse the 16-layer VGG net [89] as
adapted and fine-tuned by [73], namely the FCN-32s variant. Since annotated
depth and thermal data are much scarcer, and no suitable pretrained models
are available for these modalities, we employ smaller models, with similar
structure but having four times less output channels in each convolutional
layer to prevent overfitting.

The multimodal models are composed by summing up the outputs of the
corresponding deconvolution layers, directly before the final softmax layer.

First, we train the segmentation networks using extra modalities—one
using depth, the other using depth and the thermal modality. These are then
combined with the pre-trained RGB segmentation network [73] and fine-tuned
to provide the Sy and Sy, networks used in the experimental evaluation in
Sec. [3.2.6. After fine-tuning, FCN-32s model achieved the average precision
of 0.56 on test images, compared to 0.61 achieved by Sy. Outputs y(6) and
¥(1) are used to train gain-predicting network AH,,, , once with ground-truth
labels y to predict AH(0,) directly and once with not annotated data to
predict its estimate in form of the Kullback-Leibler divergence from Eq. (3.15).
Finally, the gain-predicting network is merged with the control sub-network
Qw, and fine-tuned on guiding trajectories.

For learning parameters of the models, we use training subsets from the
two datasets described below, where we replaced the missing measurements
in case of the depth and thermal modalities by their nearest valid neighbors.
The validation subset of the panoramic dataset were used for early stopping
and to select models for test. The reported results in Sec. |3.2.6| are obtained
on the test sequences from the panoramic dataset.

We performed 10° parameter updates with momentum coefficient pu =
0.99, linearly decaying learning rate from o = 10~* to zero, and a single
example per batch. An additional Lo regularization on weights was used
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with coefficient A = 5 x 10~%. The parameters of the models learned from
scratch were initialization using the procedure from [90]. The parameters of
the segmentation networks Sy and Sy, and the gain-predicting network AH,,,
were selected to minimize the loss on the validation set.®l The CNN-based
models were implemented in the Caffe framework [91].

B 3.2.5 Datasets

B Semi-Synthetic Human Body Dataset

In order to obtain a large number of images with accurate ground-truth
segmentation for training and evaluation we chose to create a semi-synthetic
dataset’|in the following way. First, positive examples with humans in various
poses were captured in the lab, in front of the green screen to simplify their
annotation. Second, background images were captured in a real-life environ-
ment, both outdoor and indoor, without the need to constraint the scene
conditions much. Finally, semi-synthetic images were composed by placing
annotated humans onto the background images, using the depth information
to avoid implausible configurations and to impose realistic occlusions.

For a pair of images, object configurations (i.e., rotation, translation, and
scale) were sampled from a uniform distribution until a plausible configuration
was found, as measured by an ad-hoc criterion which rewards contact at
boundary pixels and penalizes object pixels behind the background. The
process is illustrated in Fig. 3.10(a)—(d), showing the source images and the
resulting composition, along with several examples of synthetic images. Small
occlusions are often generated along the bottom boundary of the object, as if
it were partially submerged in mud or fine rubble; in some cases, there are
occlusions generated from vertical structures which are part of the background,
such as poles, staircases etc. Employing semantic scene analysis techniques
would be needed to generate major occlusions while maintaining plausibility
of the result.

We used Asus Xtion PRO LIVE to capture the RGBD data and IMAGER
TIM 160 to capture the thermal data T. The source images were split into
training, validation, and test sets prior to composition. The number of images
in every group is summarized in Table 3.1}

Data set Training Validation Test

Human 1617 539 539
Background 369 123 122
Composed 4022 1381 1294

Table 3.1: Number of images in the semi-synthetic segmentation dataset.

SNamely the parameters 6 from iteration 8 x 103, ¥ from 14 x 103, w; for true AH
prediction from iteration 64 x 103, and w; for Dy, prediction from iteration 90 x 10% were
selected.

"http://ptak.felk.cvut.cz/tradr/data/human_seg/
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Figure 3.10: Semi-synthetic human body dataset. (a) An image of human body
image of a human with (b) the ground-truth segmentation; (c) a background
image; (d) a semi-synthetic image composed from the source images. (e)—(h)
examples of semi-synthetic images.

B Panoramic Human Body Dataset

The panoramic human body dataset®| was captured indoors using the mobile
search-and-rescue platform depicted in Fig. 3.5 During data capture, the
robot localized itself using the ICP-based SLAM method from [92, 93], fusing
IMU measurements and odometry during dead reckoning. We recorded 24
sequences in total (see Table 3.2 for a summary) with the robot following a
mostly straight path”| during which it was stopping regularly to capture data,
including the thermal images for 13 discretized camera views. The dataset
allows generating instances of the simultaneous exploration and segmentation
task outlined above, i.e., it allows generating sensor data very similar to what
would be observed during corresponding online experiments by employing
a given thermal camera control policy. The panoramic RGB images from the
Ladybug 3 camera are 1024 x 512 pixels in size, the depth and thermal images
are rendered in the same resolution from captured data and corresponding
voxel maps—see Fig. 3.12| for an example.

Data set Training Validation Test
Human / Background 225 (15) 60 (4) 60 (4)

Table 3.2: Number of images (sequences) in the panoramic segmentation dataset
from the search-and-rescue platform.

Shttp://ptak.felk.cvut.cz/tradr/data/active_seg

“During our joint exercises with firefighters, we observed that robot operators often
controlled the robot to follow a straight path towards a checkpoint which lies in the currently
observable free space.
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B 3.2.6 Experiments

The experiments are divided into evaluation on synthetic data, which mainly
shows the influence of various hardware and learning setups, and real data,
which compares the behavior of the learned policy with the greedy algorithm
on the search-and-rescue platform. We provide a comparison of our RGBDT—Q
control policy with a reactive control similar to [81], here denoted by greedy,
which at each position choses the viewpoint maximizing gain of the voxels.

B Synthetic experiments

This section provides the comparison of the proposed guided Q-learning
method (referred as GQ-policy) in terms of the total AH of covered voxels.
We provide the comparison on 64 randomly generated maze-like maps for the
following methods:

B greedy reactive control similar to [81], which at each position choses the
viewpoint maximizing AH of voxels

® Q-policy reactive control learned by Q-learning similar to [72].

B optimal control estimated as a solution of MILP by the CPLEX solver.
It creates a theoretical upper bound for the case in which the map, gain
and visibility of all voxels along the whole robot’s path is known in
advance. This method is mainly used to normalize the results and make
maps with significantly different sum of gains comparable.

B optimal-incomplete control estimated as repeated optimization of
MILP by the CPLEX solver on the so far available incomplete map.
It requires to update the map and recompute the visibility of voxels and
re-plan the trajectory at each robot’s position.

B the A* control estimated as a A*-like search of the optimal trajectory,
which solves the same task as the MILP for the optimal control, but
the number of expanded nodes is limited 10°. Again, it is assumed that
the map, AH and visibility of all voxels along the whole robot’s path is
known in advance.

GQ-policy and Q-policy policies are modeled by the CNN with the same
number of hidden and output layers and neurons, only the number of inputs is
different if influence of possible features is evaluated. Considered features are
denoted as follows: D is sub-sampled layer of pixel depths, AH is sub-sampled
layer of per-pixel-AH multiplied by depth D, which makes it proportional
to the sum of per-voxel-AH in particular viewpoints. Eventually, AHcog =~

ZZD'AA;[ is the center of gravity of AH, which provides the approximate depth

in which the voxels with significant A are located. Note that for real
experiments the GQ-policy (AH+D) was used.
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Policies and features: Table |3.3| compares all these methods, especially
for GQ-policy the influence of alternative features is shown. The performance
is measured by the relative sum gain (A#H) of covered voxels defined as

rSA — achieved_sum_of AH

optimal_sum_of AH

Value of rsAH € [0; 1] captures ability of a particular method to cover the
voxel with high gain values. Especially, rsAH = 1 is theoretical maximum
which has been achieved by the optimal planning on the full map with gain
of all voxels known in advance; rsAH = 0.5, means that the method covered
only half of the gain than the optimal planning.

Method rsAH

GQ-policy (AH) 0.807 £ 0.109
GQ-policy (A7H+D) 0.846 + 0.109
GQ-policy (AH+D+AHcog) 0.884 +0.077
optimal-incomplete 0.847 £ 0.100
greedy 0.657 £ 0.114
Q-policy (AH+D+AHcog) 0.722+£0.114
A* with 10° nodes 0.943 + 0.055
optimal 1.000 £ 0.000

Table 3.3: Comparison of policies and features. The hardware setup
corresponds to the one used in real experiments. Each row corresponds to the
results achieved by particular method on 64 synthetically generated testing
maps.

Method rsAH

GQ-policy 7 viewpoints, 180°  0.853 £0.118
GQ-policy 13 viewpoints, 180° 0.846 £ 0.109
GQ-policy 25 viewpoints, 180° 0.821+£0.109
GQ-policy 24 viewpoints, 360° 0.853 £ 0.089

greedy 7 viewpoints, 180° 0.772 £0.141
greedy 13 viewpoints, 180° 0.657 £0.114
greedy 25 viewpoints, 180° 0.676 £0.114
greedy 24 viewpoints, 360° 0.628 £ 0.126

Table 3.4: Influence of different hardware setups: Table demonstrates
influence of action discretization and range of thermal camera for the proposed
GQ-policy and greedy policy.

Fig. [3.11| shows that learning the GQ-policy with relative Q-values outper-
forms learning with absolute or not normalized Q-values, see Section |3.2.3.2
for Q-values definition. Consequently proposed GQ-policy is learned with
relative Q-values in all experiments.
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Figure 3.11: Relative sum of AH as a function learning episodes.

Action discretization and range: We also evaluate the influence of
action discretization and range within which the thermal camera operates. The
corresponding results are summarized in Table 3.4, The action discretization
is given by the number of distinguished viewpoints. Range 180° corresponds
to the thermal camera operating in two frontal quadrants. Range 360°
corresponds to the thermal camera operating in all four quadrants with
allowed turn over. This experiment reveals, that when proposed GQ-policy is
used, then the resulting relative coverage does not depend on the discretization
or the range. On the other hand, greedy-policy tends to get stuck for finer
discretizations.

B Real experiments using a search-and-rescue platform

The control policies were also evaluated on the mobile search-and-rescue
platform and the test sequences from the panoramic dataset described in
Section [3.2.5 In spite of the data being pre-recorded to allow fair experimental
comparison of all methods, the generated data very much correspond to what
would be captured during an online experiment with the same platform.
Minor variations may be due to a slightly longer time needed for the recording
session compared to an online experiment, as all thermal images had to
be captured instead of just one at each position. These variations include
possibly larger temperature changes in the vicinity of human participants
during this extended time period and mostly negligible changes in pose of
these participants between capturing individual thermal images. We believe
that the resulting effects are negligible; in any case, these effects are same for

66



3.2. Learning for multi-modal active segmentation

all methods being evaluated. As in the synthetic experiments, the robot was
following a path discretized into 14 positions at which viewpoints were to be
selected. Viewpoint i; at position k was selected based on the observations
from the preceding position k£ — 1. Example images from the experiment are
shown in Fig. [3.12

We compared the following control policies:

® RGBD uses only the segmentation from Sp(x) and thus no thermal
measurements. It provides a loose lower bound on the performance since
the additional thermal modality provides an important cue with respect
to the segmentation task and improves the performance in general, no
matter what views are selected.

® DQ@N provides reactive control similar to Mnih et al. |[72] with the double
DQN extension from [94] and the prioritized experience replay from [95].

B Greedy Dygi, corresponds to the AH,,, network predicting the gain ob-
tained through self-supervision. The predicted pixel-wise gain is ac-
cumulated by viewpoint kernels and the maximum within the motion
constraints is selected for the next action.

B (GQy Dk, corresponds to the ), network obtained from the self-supervised
policy initialization.

® (GQ1 AH corresponds to the @, network fine-tuned on the guiding
trajectories (p = 1) with w; previously trained to predict true gain AH.

® Optimal uses additional information of true AH to plan the optimal
trajectory by solving instances of MILP.

DQN usually needs millions of examples to achieve satisfying results. The
computational complexity of our task does not allow to sample such a number
of training data. Consequently, we modified some parameters to accommodate
our setting /'] The optimization was carried out in the Tensorflow library [96]
using SGD with gradient clipping to maximum norm of 10. The DQN network
used the same architecture as our @, network but without normalizing the
gain prior to the fully-connected control sub-network as it must predict
absolute expected rewards. The gain-predicting sub-network was initialized
with the same parameters wy as GQ1 AH prior to fine-tuning, the control
sub-network was initialized with random weights according to [90]. During
learning, 10% experience examples were gathered in total. Finally, the model
achieving the highest rewards on the validation sequences was selected for
testing.

0Training parameters of DQN:

batch size 1 replay memory size 103
learning rate 107*  replay start size 50
gradient momentum 0.99 initial exploration prob. 0.9
target network update freq. 100 final exploration 0.1
discount factor 0.99 final exploration frame 5000

67



3. Active perception

Advantage Relative
Method AP over RGBD  w.r.t. Optimal
RGBD 0.454 0.0 % 89.3 %
DQN 0.486 7.1 % 95.6 %
Greedy Dk, 0.489 7.9 % 96.3 %
GQ, AH 0.490 8.1 % 96.5 %
GQy Dx1, 0.498 9.8 % 98.1 %
Optimal 0.508 12.0 % 100.0 %
Complete RGBDT  0.591 30.3 % 116.3 %

Table 3.5: Average precision (AP) for resulting human-background segmenta-
tion of the voxel maps from 20 instances of the simultaneous exploration and
segmentation task. The instances were generated from 4 full test sequences
by randomly selecting starting position k, viewpoint i, and planning horizon
K. Besides absolute AP, we also list the relative advantage over the RGBD-only
segmentation and relative AP with respect to the Optimal policy. Note that
the Optimal policy uses the ground-truth A gains to guide the planning; this
information is not available to other policies.

Our control policies GQg Dxr, and GQ1 AH were initialized using the
model parameters learned in Sec. 3.2.4. The GQ1 AH network was further
fine-tuned on 2198 training examples from optimal plans provided by the
CPLEX solver as solutions to the corresponding instances of MILP. From the
guiding trajectories, 15 were of full length (i.e., 14 planned viewpoints) and 29
were of varying length > 5 generated from the same source data. To reduce
the planning time, planning horizon K = 6 were used, which still allowed to
plan one full sweep ahead. The model which achieved the lowest error on 578
guiding examples from 4 validation sequences was selected for comparison.

Since the RGBD and Optimal policies provide loose bounds on the perfor-
mance from both sides, we are actually interested in evaluating the relative
performance with respect to these bounds. In Table 3.5, we list average
precision for 20 instances of the simultaneous exploration and segmentation
task. Besides absolute AP values, we also list the relative performance w.r.t.
these bounds to allow easy comparison.

Using temperature as an additional modality improves the performance and
the extent of such improvement varies with policy, due to different thermal
images captured. Using self-supervised gain-predicting sub-network Greedy
Dk7, alone already provided a competitive alternative to DQN. Using complete
Q. networks further improved the average precision, with GQ, Dkr, having
an advantage of another 1.7% over the GQ; AH policy. A possible reason for
the self-supervised control network outperforming the GQ; AH policy may
be a larger tendency to overfit on our panoramic dataset, which still has a
rather limited size.
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Figure 3.12: Panoramic images and corresponding voxel maps from experiment
on test data with the mobile search-and-rescue platform. Top: three panoramic
images: (top row) RGB image with humans delineated by green and magenta
contours, as given by segmentation from the Sp(x) and Sy (x, z) networks, respec-
tively, and blue overlay denoting the accumulated temperature measurements,
(second row) depth image and (third row) thermal image, both rendered from the
voxel map. Bottom: reconstructed and segmented voxel map with accumulated
thermal measurements in blue. Light red denotes the voxels marked as human
by the Sy(x) network based on the RGBD data only, dark red denotes the voxels
marked as human by the Sy (x,z) network based on the data with additional
temperature measurements.

B 3.2.7 Conclusion

We have proposed a guided self-supervised learning method for active se-
mantic mapping with a RGBD sensor (calibrated camera with lidar) and a
pan-tilt thermal camera. Thorough experimental evaluation on synthetic
data justified all design choices such as used features, Q-value normalization,
discretization and range of the action space. The best performing setup has
been qualitatively and quantitatively evaluated on the real platform and
compared to standard baselines on challenging real-world search and rescue
exploration scenarios, which intentionally comprised many confusing objects
such as dolls, pile of empty coats heated on the human temperature, strongly
over /under-illuminated areas or heavily occluded humans. Since full thermal
scans has been recorded for all robot positions in all 23 scenarios, the resulting
active search and rescue dataset, which has been made publicly available,
could serve for a fair and repeatable comparison and further development of
active semantic mapping methods.

Comparison of evaluated policies reveals that using actively controlled
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thermal camera yields 7% higher average precision than the pure RGBD sen-
sor. The best performing setup (GQyDx1,) has achieved 3% higher average
precision with respect to the DQN baseline. While DQN often suffer from
slow convergence or from the convergence to a local minimum due to the
delayed rewards, proposed guided Q-learning overcome these problems by
generating the guiding samples. Estimation of guiding samples is formulated
as the optimization problem, which requires transition probability. Both the
transition probability and the optimization itself may not be tractable in
some cases.

We have been able to achieve average precision around 0.5 on the provided
active search-and-rescue dataset, which gives a large space for future improve-
ments. The main source of errors stems from (i) robot motion estimation
inaccuracy, which caused multiple responses of a single human in the resulted
semantic map; and (ii) insufficient number of real training data, which would
sufficiently represent visual diversity of real search and rescue missions. Al-
though we aim at close to real-time method we are not there yet. Real-time
usage on our current platform is mainly limited by the depth measurement
speed, one complete laser scan takes about 3 seconds, and the absence of

GPU on board.
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Chapter 4

Terrain traversal learning

One of the crucial tasks of the mobile robot is the ability to traverse the
terrain. In the following section, we focused on controlling the augmented
robot tracks (called flippers) of the Tradr UGV platform mentioned in the
previous sections. Clever control of these flippers allows the robot to traverse
a lot of different obstacles. It is an important function not only when the
robot is fully autonomous but also in cases when the robot is teleoperated.
The additional degrees of freedom is a big load for the operator and it is
highly desirable to let the human control only the direction or the speed of
the robot. Therefore we propose the method that autonomously controls the
flippers.

We have extended the reinforcement learning method [97] by adding con-
straints, which have to hold not only for the final policy but for the whole
learning process. Learning the policy to control the flippers should take an
immense number of evaluations which can lead to wear or damage of the
robot. The constraints we propose help to converge faster and safer. In the
following section, we show this method working with the safety constraints
(defined by the pose of the robot), but the constraints could be defined in a lot
of different ways, for example, observability constraints. This chapter is based
on our publication "Autonomous Flipper Control with Safety Constraints"
which was published at the IROS conference (International Conference on
Intelligent Robots and Systems) [5]. This conference has A CORE ranking in
robotics.

B 4.1 Constrained relative entropy policy search

The task of Reinforcement Learning (RL) [98] is to search through the space
of policies 7w : S — A, which map agent states S to possible actions A; the
actions are then applied either in reality or using a transition model, and
the agent reaches a new state (this description is usually known as Markov
Decision Process, MDP). RL expects that the agent is rewarded for being in
state s with a reward R(s) € R, and searches for a policy that maximizes the
expected reward over all trajectories the agent might execute. It is different
from supervised learning, which maximizes the immediate reward and not
the long-term one.
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Policy Gradient (PG) methods [99] stochastically optimize the expected
sum of rewards by direct sampling in the policy parameter space. Learning
performance of PG methods does not depend on the complexity of controlled
systems. Such property makes them suitable for learning of controllers
for robotic systems for which robust real behavior prediction using the
first-principle models is difficult (such as closed form equations describing
kinematic and/or dynamic behaviors for rover-terrain interaction, or Navier-
Stokes aerodynamic laws). Unfortunately, PGs usually require many trials
which endanger the real system or cause its excessive wear. Therefore, they
are usually not used directly on the real system, but on data-driven models [97,
100} |101], or in simulators [102].

Learning performance of PG methods depends only on the number of policy
parameters being optimized [101]. Since it is not easy to find a useful low-
dimensional policy parameterization, the sampling is often time-consuming,
even if the model is implemented on a GPU [97]. We argue that constraining
the PG on a smaller subset of possible policies leads to more efficient policy
sampling. We suggest to include various implicit constraints, such as safety
or maximum joint angles, into the PG search.

GPREPS uses a stochastic upper-level policy which generates deterministic
lower-level policy samples. The expected sum of rewards of these samples is
evaluated on an existing Gaussian Process (GP) model and used to estimate
the upper-level policy gradient. In contrast to the original GPREPS, the
proposed method called Constrained-REPS (CREPS) evaluates also other
properties of the generated samples and successively constrains the upper-level
policy distribution to sample from a bounded distribution, which (i) reduces
the number of needed samples/iterations and consequently speeds-up the
learning process of the model, and (ii) provides a safe policy when used with
the real system.

While deciding if joint angles are in given bounds is obvious, evaluating
safety is more complicated. Since it is difficult to provide any guarantees
on data-driven models created from real-world samples without any prior
knowledge about the underlying physics [103, [L04], we replace the GP model
from GPREPRS by a cautious physics-based simulator [105] that certifies the
safety of generated samples. The cautious model of a system is defined as
a model that generates unsafe trajectories for all policies which are unsafe on
the real system, but could also generate unsafe trajectories for policies which
are safe on the real system.

The major contribution of this work is twofold: (i) We propose extending
GPREPS [97] to a new constrained Policy Gradient method by including
implicit constraints which cannot be derived explicitly from first-principle
models. (ii) The new algorithm is evaluated on an autonomous flipper control
task on real search-and-rescue rover platform (see Fig. |4.1) and the results
are compared with two existing methods [97] and [106].
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Figure 4.1: Tradr UGV. Track flippers visible on the side of the robot. A policy
governs active tilting of the flippers assuring a safe traversal.

B 4.1.1 Related work

Policy Gradient methods proved useful for systems which are not easy to
model. For example, Kupcsik et al. demonstrate data-driven PG learning
of the ball throwing problem with a robotic arm, and Tedrake et al.
argues that Policy Gradient learning for aerial maneuvers with an ornithopter
may be very efficient in fact. Transeth et al. show that for snake-like
robots with significant side-slip, no closed form expression of the snake’s
motion exists, therefore policy learning must resort to simulation.

Constraints have been imposed into several PG methods. Uchibe and
Doya propose constrained policy search by for GPOMDP [109]. However,
the GPOMDP belongs to early PG algorithms which use the likelihood-ratio
trick to compute the gradient of the expected sum of rewards and then update
the policy parameters by a user defined learning rate. In contrast to , we
impose constraints into the GPREPS algorithm. GPREPS bounds the KL
divergence which typically yields uniform convergence in the whole parameter
space and increased learning speed. Prashanth propose constrained PG
method for Stochastic Shortest Path problem with inequality constraints on
Conditional Value-at-Risk (CVaR) as a risk measure. This method does not
allow to include implicit constraints and cannot be easily extended for general
episode-based rewards such as minimum distance of the trajectory from a
target positions.

Despite the fact that safe exploration becomes a key issue (, ), it
has remained almost neglected in the general reinforcement learning commu-
nity . Akametalu et al. propose Policy Gradient with safety metrics
based on reachability analysis and demonstrate the algorithm on experimental
quadrotor application. In contrast to us, they restrict the model to the class
of control-affine systems with locally Lipschitz continuous functions.

Bagnell [111] encodes safety into uncertainty of the dynamics model, and
assigns negative rewards for leaving an area close to already visited states.
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Generally, connecting safety and rewards into a single function is popular |113,
106, 112|. However, as it is shown in e.g. [114, |115], separating safety and
rewards into independently optimized measures simplifies the learning process
and allows for re-using the safety constraints for multiple different tasks. It
is also usually unclear how to choose the weight vector to sum up the reward
and safety terms, and what is the impact of negative numbers with high
magnitude on the performance of policy search methods.

Moldovan and Abbeel |116] define safe policies as those preserving ergodicity,
which means from any state there exists a policy that returns the robot to
the initial state. This definition is too strict, since it discards a whole class of
problems where inverse actions do not exist or returning to the starting state
is not possible or even desired. A real word example is the Safe Traversal
(ST) task defined in section 4.1.3. In this task, the policy does not control the
forward speed, which is constant; therefore, it can never reach the starting
state again, and still there are safe policies for this task.

B 4.1.2 Theory

B Preliminaries

Model-free policy search algorithms usually follow these steps: (i) generate
trajectories from the real-world system, (ii) compute a policy maximizing
the expected sum of rewards on the so-far-generated trajectories, (iii) use
the policy to generate a new real-world trajectory, (iv) repeat from (ii).
Contextual REPS [97] adds a task-dependent context s (a changing property
of the environment, e.g. the height of an obstacle), from which it extracts a
feature vector ¢(s). This feature vector is an input of the stochastic upper-
level policy q(s,w), which generates parameter vectors w which, in turn,
define the lower-level policy. Samples w =~ ¢(s) are evaluated on the model
(which is called a rollout) and the corresponding sums of collected rewards
(or a single episodic reward) R, are recorded. Using this data, Contextual
REPS searches for a new upper-level distribution p(s,w), which maximizes
the expected sums of rewards while staying close to the so-far-generated
trajectories. The distance of trajectories is measured by Kullback-Leibler
(KL) divergence. Bounding the KL divergence between p(s,w) and ¢(s,w) as

follows: ( )
p(S,w

p(s,w)lo <e,
22 rew)lon o)

where e specifies the trade-off between exploration and exploitation, was
shown to lead to uniform convergence in the whole parameter space [117].
Another constraint imposed on the upper-level distribution in Contextual
REPS is to preserve the average distribution of context features:

Z ZP(S, w)(s) = ¢?7
where (ﬁ is the average feature value.
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B Additional constraints

We extend Contextual REPS with additional constraints. In particular, for
systems which are not inherently safe, or which are prone to wear, we use
a cautious physics-based simulator to determine a rollout safety Ss,. The
safety equals to 1 if policy w generated a safe trajectory for context s, and
equals to 0 otherwise. We force the upper-level distribution p(s,w) to have
expected safety bigger than user-defined threshold §

ZZP(Saw)(l - st) < o (4.1)

Another source of additional constraints is a prior knowledge of physical
limits such as the maximal joint angles (which are the control actions in
our experiment). Violating such constraint is usually not safety-critical,
because reaching an impossible pose is often prevented by some low-level
motor drivers. However, evaluating many impossible samples naturally slows
down the learning process.

Since all of these constraints have the same form, we compose a vector Cgg,
as a collection of evaluated quantities (e.g. safety and mechanical constraints)
and vector & as a collection of corresponding bounds. Such notation yields
the following set of inequalities

ZZP(Saw)(l - Csw) < 6 (4.2)

where 1 denotes a vector with all-ones of a corresponding dimension.

B Constrained REPS

Constrained REPS searches for an upper level policy distribution p(s,w)
corresponding to the solution of the following optimization problem:

max Z Zp(s, W) Rsw,
5% wem] p(s,w)
p(s,w)log o, )
ZZp s,w)(1—Cgy) <4, (4.3)
S w
> pls,w)e(s) = ¢,
S w
> p(s,w) =1.
S w
We follow the same derivation as proposed in [97] and solve the problem by
the method of Lagrange multipliers (the detailed derivation is provided in [97]
and is not given here due to space constraints). By setting the gradient of

the corresponding Lagrangian with respect to p(s,w) to zero, we obtain the
closed form solution

(4.4)

0T b(s) —
p(s,w) ox g5, w) exp (R 0" p(s)

Y"1+~ Cu
"
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where «, @ and 7 are solutions of the following dual problem

max g(n,7,0)
1,7,0

t.:v >0, (4.5)
n >0,
where
st - 0T¢ S)— ’YT]- + TCsw
9(n,7,0) =nlog> > q(s,w)exp (&) T
el 1 (4.6)
+ne+0Tdp+~T4.
Using a dataset D = [s[i],w[i],RLﬂ,, CE(L]Z':L“,, ~N where samples are picked

from distribution ¢(s,w), we can rewrite the previous equation as

9(n,7,0; D) =nlog

RY, — 0T (sl —
3 e -

~T1+ VTCL’JU)}

(4.7)
~+ ne + 0T¢ +~74,

Dual problem (4.5) is a convex function with lower bound constraints. We
achieved the fastest convergence with the interior point algorithm [118] with
supplied gradients:

dg

Cetlog = Z 28, wlily 4 (4.8)
67] i=1

N, Z(s1, ) (RE), — 07T g(sl) — 471+ 4T Cll)

7721:1 ( [Z]vw”) ,
[4] [i]

8’7 Z Z(S[Z] wM)
00 i\; (s[Z] , w[l]) ’ )
where Z(sll, wlil) = exp (RLﬁL—ew(s“?—Wlwc&i).

Probabilities pl!! of the new upper-level distribution are estimated from the
optimal dual variables 8, ~, n:

il ( wo =0 () —5T1 4 ‘YTCQJ>
p o< exp

. (4.11)

To generate samples from this distribution, we either use weighted maximum
likelihood to fit a normal distribution into samples (w!?,sl!) weighted by
probabilities pl! as suggested in [97] or we use importance sampling to generate
samples from the non-parametric distribution. Constrained REPS is described
in Algorithm [9
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4.1. Constrained relative entropy policy search

Algorithm 9: Constrained REPS
Input: maximal information loss €, vector of constraints §, context
distribution p(s), initial upper-level policy 7(wls), number of policy
updates K, number of samples .
for k=1,..., K do
fori=1,...,N do
Observe sl from p(s).
Generate parameters wl? from 7(w|sl).
Using w!il execute lower-level policy on the model and collect
i, cll,
Fill in dataset
D = [sl], wli, [sll,c[sll]izl,...,N
Optimize dual function
[1,7,0] = argmin,, » ¢ g(n, Y, 6; D).
Compute weights pl! for all samples in D, Eq. (4.11).
Update upper-level policy 7(w|s).

Fig. 4.2 shows a toy example. We generate 1000 samples from one-
dimensional normal distribution g(w) with both mean and variance equal
to 0.3. We have intentionally chosen the position of rewards maximum into
w = 0, safety equal to one for w > 0.5 and mean of ¢ into 0.3 to make all
constraints active. We set the upper bound on KL-divergence ¢ = 0.1 and
the lower bound on safety § = 0.6. We verify the average safety of samples
generated from the distribution given by (4.11) is 0.6064, which is indeed
above the required safety bound.
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Figure 4.2: Toy example demonstrating solution of problem (4.3). Resulting
upper-level probability distribution (equation (4.11)) is in black. Please notice
the maximum reward is located in an unsafe area. Therefore, CREPS computes
a distribution that prefers safe, though suboptimal choices.
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4. Terrain traversal learning

B Safety function

One of the additional constraints uses the term S, which denotes the safety
of the rollout (1 is safe, 0 unsafe), and is computed by a cautious physics-
based simulator. In simple cases, it can be an equation (even implicit), that
checks some constraints of arbitrary order. When modeling a complex system,
standard software physics and dynamics simulators can be used. The only
requirement is that the simulation has to fulfill the cautiousness requirement.
From the implementation point of view, the cautiousness can be a core part
of the simulator design or it is achieved by adding noise to the inputs and
outputs, and testing more possible values of uncertain parameters (such as
track-soil interaction). This way, it should be possible to create cautious
simulations of most of the real-world systems (given the simulator can simulate
all the important interactions and influences).

Since the simulator is only approximate (and contrastingly to GPs, it
cannot be easily updated by new samples), real-world verification of its
reward estimates has to be performed. Therefore, after finding an optimal
policy in the simulator, a few more policy search iterations are performed on
the real robot. Safety is still a concern, so every sampled lower-level policy is
first tested for safety in the simulator, and if it is safe, it is executed on the
real robot, and the real-world reward is collected (instead of the one reported
by the simulator).

B 4.1.3 Experiments

B Safe Traversal task description

The robot has to learn a flipper control policy that would allow it to traverse
an obstacle without any prior knowledge about the correct traversal strategy
(see Fig. . This task has been chosen because it very well separates good
and bad policies (as well as safe and unsafe). A bad policy is not even able
to get the robot on top of the obstacle, and therefore the robot gets stuck in

Figure 4.3: The task is to learn how to traverse safely a pallet without any
prior knowledge about the correct policy. There are more substantially different
policies satisfying our constraints on safety and forward speed. Left: real robot
executing a safe policy. Right: visualization of the simulated robot
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4.1. Constrained relative entropy policy search

front of it and travels only a short distance (receiving low reward). This task
also allows for a wide variety of unsafe policies.

Some results of this experiment are compared to a similar task called
Adaptive Traversability (AT) presented in [106] and improved in [59]. The
goal of that task is to find a policy to control the flippers so that the robot
maximizes a weighted sum of rewards (and minimizes penalties). The training
process is a combination of supervised and reinforcement learning and requires
a large set of manually annotated data. Since the forward speed is constant
in the task, we compare the policies using the penalties for high pitch angle
and for high acceleration.

We use a similar environment for the Safe Traversal (ST) task. The
tracked robot starts in front of a standard wooden EUR 1 pallet. The robot
is automatically driven forward by a constant speed, and the experiment ends
after 30 seconds. For an illustration, see Fig. 4.3.

States. States of the ST task are: (i) robot body pitch, and (ii) height
of the terrain approximately 20 cm in front of the robot body (read from
an octomap built online from laser scans).

Actions. ST policy controls independently the pairs of front and rear
flippers using positional control. Therefore, the action space is continuous
and 2-dimensional.

Rewards and Safety. In the AT task, safety is not modeled separately,
and some of the safety features are part of the reward. The reward for
the AT task is a weighted sum of (i) manually assigned safety penalty, (ii)
high pitch/roll angle penalty, (iii) penalty for excessive flipper motion, (iv)
robot forward speed reward, and (v) motion roughness penalty measured by
accelerometers |106].

In the ST task, the reward is simply the distance traveled in 30 seconds
over the pallet (the choice of policy influences e.g. track slippage and motor
stress, which lower the speed). Safety is modeled explicitly by the cautious
simulator, which marks as unsafe all rollouts in which the robot tops over,
hits hard on the ground or obstacle (measured as deceleration), or hits objects
with delicate parts of its body (e.g. sensors).

Policy. We use a policy that is linear in the states, and that controls front
and rear flippers separately. The state vector is 2-dimensional, which yields 3
parameters per action, summing up to 6 policy parameters, w = (w1, ...,ws),
to be learned.

Context. In this experiment, we did not make use of the context—it was
always set to zeros. This helped to keep the experiment simple, and was also
needed to keep the possibility of comparing ST and AT results. The theory,
however, supports the use of context.
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4. Terrain traversal learning

B Experiment Setup

The experiment follows the pipeline described in Section 4.1.2. First, 10 to
30 iterations of the CREPS algorithm are done using only the simulator (until
the policy converges). It returns an upper-level policy, from which we can
draw lower-level policies that are safe and lead to high expected rewards. In
each iteration, we test approximately 150 simulated rollouts to estimate the
sum in the dual function (4.7).

If improvement by real-world samples is intended, the experiment continues
with 10 lower-level policies sampled from the optimal upper-level policy and
checked in the simulator for safety. If they are safe, they are executed on the
real robot. Otherwise, different policies are sampled until the desired number
of safe policies is reached.

These real samples are further used to update the upper-level policy in
the CREPS algorithm. This way we can correct the policy if the simulator
estimated the rewards incorrectly.

B Results

We tested the algorithm with several settings to show it consistently converges
to high rewards in safe regions. The settings differed in e.g. the initial policy,
upper-level policy representation (either a multivariate Gaussian distribution
or the Importance Sampling mechanism as described in [Equation 4.1.2), and
the expected safety lower bound (generally 0.8, but in one experiment it was
set to 0.0 to simulate unconstrained REPS).

The probability distribution of safe/unsafe policies showed to be very
complex during the experiments, and it is far from being Gaussian or uniform.
As can be seen in Fig. [4.4] most of the time, the mean safety of rollouts
is below the desired threshold of 0.8. However, it still tries to reach the
threshold. In this case, the Importance Sampling method yields better results,
as it better represents the complex distribution.

In the two experiments with unconstrained REPS, comparing Fig. |4.4
and Fig. 4.5], it is clear the algorithm strived for the highest rewards possible
and safety quickly dropped to almost zero (which means the traversal was
faster, but the robot hit ground too hard during the rollout). Interestingly,
one of the unconstrained experiments reach a level of expected rewards not
seen in any of the safety-constrained cases, which suggests that the best
policies are unsafe and CREPS correctly avoids these maxima.

Fig. [4.4] and Fig. 4.5 show that the CREPS algorithm maximizes the
rewards in cca the first 10 iterations, and then it holds the good rewards
and tries to satisfy the expected safety constraint. As we discussed earlier
in this section, since the safe policy distribution is difficult to represent, the
expected safety constraint is often broken. However, it does not mean that
the robot could be damaged because of this imperfection. It only means that
we probably need to sample more lower-level policies until a safe one is found
(which is always tested in the simulator before real execution).
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Figure 4.4: Mean safety during rollouts. w; is the initial value of the first
element of the policy parameter vector, and it showed to have large influence on
safety. The solid black curve is from a policy initialized close to a local maximum
of the safety function. Compare with Fig/4.5/ to see that the reward increased
very slowly with expected safety higher than the desired threshold of 0.8. The
last two policies were not constrained by safety at all (behaving like Contextual
REPS), and they quickly found the best rewards lie in the unsafe space. Also
note the Importance Sampling experiments tend to achieve higher expected
safety.

We compared the high-pitch and high-acceleration penalties gathered by
both an optimal policy for the ST task and also for the AT task. We performed
10 rollouts with each of the methods, and compared the penalties; results
are shown in Fig. 4.6, The pitch histogram was essentially the same for
both tasks, so only the acceleration histograms are shown in Fig. [4.6l The
figure illustrates that the CREPS policy doesn’t generate more dangerous
trajectories than the AT policy (which was however trained with a large set
of manually annotated data).

Last, we closed the loop improving one of the best policies found in the
simulator by real-world reward samples. We executed two CREPS iterations,
each with 10 samples. Safety was always checked in the simulator, then the
sampled policy was executed, and the real-world reward collected. After two
gradient search steps, the expected reward is higher than the best reward
achieved in the simulator, as is shown in Tab. |4.1. It is important to note
that the policy search now cannot reuse samples from the simulator, since
the reward estimate may be biased by imperfection of the simulator. The
converged simulated policy performance was lower when used in the real
world, but after only 2 real-world iterations, the CREPS algorithm converged
to the real-world optimum (which is different from the simulated optimum,
since the simulator is only approximate). The reader should notice that the
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Figure 4.5: Mean reward during rollouts. The last policy not constrained by
safety converged to an optimum with the highest expected reward.

simulated optimum had to be close to the real-world optimum, since CREPS
doesn’t allow large changes of the policy.
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Figure 4.6: Comparison of acceleration during 10 rollouts with AT and with
ST (shown as relative histograms). Values over 2 (right to the blue line) are
penalized in the AT task.

B 4.1.4 Conclusion

We extend an existing Gradient Policy search algorithm (Contextual REPS)[97]
by adding implicit constraints that help keeping the gradient in a promising
direction. We call the algorithm Constrained REPS (CREPS). One of the
additional constraints includes robot (system) safety which is determined by
a cautious simulator. We presented the basic equations needed for imple-
mentation of this algorithm, and we have shown correctness of the algorithm
both on a toy example and on a task with real robot. In a small number of
iterations (and with about 2000 simulated trajectories), the robot learned
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4.1. Constrained relative entropy policy search

Iteration Kind Policy Converged Mean Reward
29 Simulated yes (in sim.) 0.80 +£0.01
30 Real no 0.73+0.10
31 Real yes (in real) 0.85+0.05

Table 4.1: Execution in the real world

how to traverse safely a previously unknown obstacle, and even the learning
process itself was safe—thanks to the cautious simulator. We show that the
cautious simulator can be designed in such a way that it does not constrain
the possible actions too much and the robot is still able to reach the safe
optimal rewards.
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Chapter 5
DARPA Subterranean challenge

Similar to other fields of science, robotics is facing a crisis of research re-
producibility. The cost of experiments rises with the amount of logistic and
technical issues which need to be solved for any field experiments. The high
cost of field experiments causes the evaluations to be performed on datasets
often gathered for a different purpose, thus making them either not sophis-
ticated enough or not able to capture the uncertainty and unpredictability
of real scenarios. Another reason is the complexity of the systems, where
most robots comprise many smaller submodules from which are usually tested
separately. Thus, method interoperability, compatibility, and their impact on
the whole system’s efficiency often remain neglected. The last reason is that
failures of experiments are often blamed on technical issues, and the reliability
and robustness of the methods are not reported. Instead, scientific papers
focus on issues of accuracy or computational complexity of the individual
methods rather than the reliability of the integrated systems

With all the mentioned problems, the performance of robotic systems cannot
be optimal in real-world situations which are impacted by the robustness
of the deployed systems. Robotic contests offer a potential solution to the
problem. The results of many of these contests, such as MIROSOT ,
Eurobot , RoboTour , RockIn or MBZIRC , show that the

success depends more on reliability and interoperability than other aspects.

Figure 5.1: Left: Tradr UGV in the simulated metro station. Right: Boston
Dynamics Spot robot in cave.
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5. DARPA Subterranean challenge

In 2018, Defense Advanced Research Projects Agency (DARPA) announced
the Subterranean Challenge (SubT). The primary goal of the challenge was
to discover innovative solutions that can navigate, map and search complex
underground environments. The DARPA SubT Challenge was organized not
only to fund but also to motivate the development of robotics systems that are
capable of supporting search-and-rescue operations without any supporting
infrastructure in the underground environments (see Fig. for examples).
The contest emphasizes the reliability and efficiency of complete integrated
systems rather than the efficiency of the individual modules and components.
In particular, the performance of robotic teams is evaluated by their ability
to quickly and accurately locate relevant objects in underground sites with a
variable degree of complexity.

This chapter describes the participation of our team called CTU-CRAS-
NORLAB (see Fig. in this competition and briefly outlines our approach.
Since the whole system is vast and complex, only the main parts are described,
focusing on topics I have contributed. I was the main person responsible for
object detection, and I was the team operator (the only person allowed to
communicate with the robots during the missions). This chapter is based
on the published reports "System for multi-robotic exploration of under-
ground environments CTU-CRAS-NORLAB in the DARPA Subterranean
Challenge" , that was accepted in Field Robotics journal, and "Darpa
subterranean challenge: Multi-robotic exploration of underground environ-
ments" 7], published at Modelling and Simulation for Autonomous Systems
International conference.

> -
ﬁ/ DARPA

Figure 5.2: CTU-CRAS-NORLAB team at urban circuit.
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B 51 Challenge specification

In the SubT Challenge, a team of mobile robots has to actively search an
environment to locate and report the positions and types of specific artifacts
in a previously unknown, subterranean environment with limited human
interaction. The performance of the robotic team is evaluated by the number
of objects detected and correctly localized [126]. The competition was divided
into three preliminary rounds, where each round tests the system in a different
environment and one final round, which was a mixture of all environments.
See Table |5.1] for places and dates of the rounds. The challenges presented
by subterranean environments can vary across subdomains. There were
three different subdomains presented in the Subterranean Challenge. The
first environment where the challenge took place was a human-made tunnel
network; the second challenge was in urban underground, and the third
environment presented within the challenge was the natural cave environment.
The tunnels can be multiple kilometers long with constrained passages, often
with hardly traversable terrain with mud, dust, and partially flooded passages.
Urban environments are complex, multilevel structures with stairs and holes
in the ground with constrained passages such as doors. The natural cave could
contain irregular geological structures, with both constrained passages as well
as large caverns. The topologies are often unpredictable, and the passages
are hardly traversable. All these subdomains have common issues such as
an absence of GPS signal, low communication-signal throughput, hardly
traversable terrain, and low or no illumination. DARPA added dynamic
obstacles and generated smoke in some passages to make the conditions
even harder. A virtual component of the same challenge was running in
parallel, where the whole system took place in a simulation and had to be
strictly autonomous. We attended all system circuits (the real robot system
deployment) and two virtual rounds (cave and finals).

Event Date Place Enviroment
Tunnel Circuit 08/2019  Pittsburgh, Pennsylvania Coal Mine
Urban Circuit  02/2020  Satsop, Washington Nuclear Plant
Cave Circuit Canceled Canceled Natural Cave
Final Event 09/2021  Louisville, Kentucky Cavern

Table 5.1: Summary of DARPA organised events for SubT with their environ-
ments. Cave circuit was canceled due to covid-19 pandemic. The final circuit’s
cavern contains artificially made all environment subdomains.

B 5.1.1 Competition rules

With limited time (30 minutes) and personnel (maximum 5 people at final
round), each team has to prepare a robotic system to explore a previously
unknown environment inaccessible to the personnel. Fig. [5.3| depicts the
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staging area where the team prepares the robot for the mission. The robotic
fleet has a mission to find, locate and then report back to base the position
of the previously given objects called artifacts within a limited time (usually
1 hour). During the mission only one person (team operator) is allowed to
control any aspect of the mission and view the data reported back by the
robots.

Figure 5.3: Staging area at finals during the preparation for the scored run.
Robots are already on their place. Their exact position is measured by the
person at right side of the image. Base station is prepared by the team operator
(the person with orange helmet).

B Artifacts and scoring

All artifacts that have to be found change for each circuit and are specified by
DARPA beforehand. New domain specific artifacts were added in each round.
See Fig. where the artifacts are depicted. The common artifacts were
presented in each round extended by domain specific artifacts. In the final
round all ten artifacts were presented. One of the artifacts was detectable
only by CO2 sensor — gas.

For a team to obtain a point, it is required to

® find and recognize the correct type of artifacts,

B Jocalize the artifact with a maximum of 5m of euclidian distance from
the ground truth in the global coordinates,

B and report the correct type and position back to home base.

There are between 20/40 artifacts on the course. Each team can send 40
reports during one run, making it not possible to brute force the problem.
If any teams would have the same number of points, other factors such as

88
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how fast the artifacts were reported or how far teams traveled are then
used as a tie-breaker. More information can be found on the DARPA SubT

website [126].

Figure 5.4: Artifacts divided by subdomains.
Common artifacts: backpack, survivor, cellphone.
Tunnel artifacts: fire extinguisher, drill.

Urban artifacts: gas, vent.

Cave artifacts: rope, helmet.

Final artifact: transparent color-changing SubT logo.

B 52 CTU-CRAS-NORLAB solution

This section describes part of the solution of the CTU-CRAS-NORLAB team.
Because the whole system is really vast and complex only the main ideas
are mentioned below. The main focus is on the parts of the system that are
related to my contribution.

B 5.2.1 Hardware

Our robotic fleet changed a bit between the circuits, but some of the robots
were with us from the beginning till the final. The main robotic platforms
that contributed to the challenge are described below.

B Tradr UGV

Tracked robotic platform developed during the TRADR project. This robot
was already mentioned in previous chapters, but we upgraded the hardware
during the SubT Challenge (see Fig. [5.5left). The rotational 2D LiDAR
SICK LMS-151 was replaced by the Ouster OS0 with 128 beams. This allows
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us to perform the faster and more precise movement because later on we were
limited by rotation of laser, which takes 3 seconds to measure complete scene.
The camera PointGrey Ladybug 3 omnicamera is used to obtain RGB pictures.
From a computational point of view, we extended the robot by GPU unit
NVidia Xavier AGX, which allows us to run the detector onboard on 6-8 Hz
at the 608 x 608 image size. As the computational demands of our algorithms
increase, we have also added an offloading computer (Intel NUC8-i7) that
can process the mapping and other CPU-intensive operations. The main
advantage of this robot is the flippers which allow the robot to access the
areas not accessible by the wheeled robots (stairs or rugged terrain).

B Husky A200

The Husky A200 from Clearpath Robotics is a differentially driven wheeled
platform (see Fig. right). The platform is built to be rugged and capable
of traversing mud, gravel, light rocks, and steep declines/inclines. The main
advantage of this platform is the speed in comparison with tracked UGV
mentioned above. The sensor equipment changed during the competition
a lot. In the first rounds, we used the Robosense 3D lidar with 32 lines at
the final competition; we replaced it with the Ouster OSO with 128 lines.
The global shutter of the cameras is a must-have feature in low illumination
scenarios. The images are deformed while using a rolling shutter with the
long exposure (which is needed to obtain enough light) In the preliminary
rounds, we used Bluefox MLC200 cameras that were replaced by Basler Ace
2 a2A1920-51gcPRO for the final round. The robot uses the Xsens MTI-30
inertial measurement unit. NVidia Xavier AGX and Intel NUCS8-i7 served
sufficient computational power.

B Spot

Spot robot by Boston Dynamics is a state-of-the-art walking robot that allows
exploring various environments fastly (see Fig. left). It can traverse almost
all kinds of obstacles, which was the main reason why almost all the teams
deployed spots in the final round. We have used the same sensor set as on the

AT

Figure 5.5: Left: Upgraded tracked Tradr UGV. Right: Husky A200 wheeled
robot.
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husky payload. We use Ouster OS0 with 128 lines for depth measurements
and five Basler Ace 2 a2A1920-51gcPRO which gives us visual information
from the surroundings. The computational resources consist of NVidia Xavier
AGX and Intel NUCS8-i7.

Hl X500 UAV

The Multi Robot System Group from CTU in Prague made a custom UAV
(unmanned areal vehicle) for flying indoors. During the competition, the
drone developed a lot, and changes were made between all the rounds. The
final version of the drone can be seen on Fig. right. It is equipped with
Ouster OS0 with 128 scanning lines with an extended 90-degrees field of
view. Two Intel Realsense RGBD cameras are used to cover blind spaces
of the lidar below and above the drone. The platform is equipped with two
dedicated artifact detection cameras, the Basler Dart daal600. The UAV has
an outstanding flight time of 25 minutes. This developed drone is capable of
flying in dense indoor environments, even in tight vertical shafts, while being
able to localize itself with the required accuracy. This platform was also
introduced into the virtual competition, and it was used by almost every team
due to its capabilities. Some parts of the system (e.g., mapping, navigation)
differ between UGVs and UAVs. Since my personal interest and contribution
are mostly in ground robots, the following text is related mainly to them.

B 5.2.2 Communication channels

During search-and-rescue situations, interweaved hallways, underground tun-
nels, shielded rooms, and thick steel-reinforced concrete walls make hard or
even impossible to maintain any stable radio link. To partially overcome
this issue, we designed a combined hardware and software solution. All the
platforms were equipped with three types of communication channels (see
Table . WiFi for direct control and debugging when the robots are on
line-of-sight. Long-range mesh network Mobilicom sends all essential data
and custom-made motes, which could be dropped from the robots that send

254 RSV

Figure 5.6: Left: Spot by Boston Dynamics. Right: X500 UAV developed by
Multi Robot System Group from CTU
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some small critical messages between robots. Motes could help, for example,
in cases where the robots went out of the range of the Mobilicom nodes, and
the operator wanted them to return to the signal. The software solution is
shortly discussed in Section [5.2.4|

Type WiFi Mobilicom MOTE
Range Short Medium Large
Frequency 5GHz 2.3GHz 900MHz

Bandwidth 50 Mbit/s 1 Mbit/s 432 bits/s

Table 5.2: Communication methods comparison.

B 5.2.3 Software architecture

While appropriate hardware is necessary for successful participation in the
challenge, it is the software that brings the entire system alive. To stress the
importance of the software, DARPA SubT has a parallel virtual track where
the contest occurs only in software simulations of the deployment sites. While
not all the teams participated in the virtual track, most of them utilized
the simulators as an integral part of the development process since tests in
a simulation are much less tedious than real-world testing. The software
modules of all robots had to tackle localization, mapping, navigation, object
detection, exploration, and multi-robot coordination

All of the systems used in the competition were running the Robot Oper-
ating System (ROS) [127] in its Melodic version on Ubuntu 18.04. Choosing
ROS allowed us the benefit from the multitude of packages developed by
the open-source community around ROS; thus, we could concentrate on the
software that is specific for our platforms. For example, the whole driver
stack of the Husky robot up to EKF-based localization, RGB camera, and
lidar drivers was using just the publicly available code from ROS community.
The community-provided packages do not, however, have only advantages.
ROS does not (yet) provide any terms of software quality measures, so it
happens that as we are using a package, we discover it is either buggy or
not written in an optimized manner. Thankfully, as all the packages are
open-source, we can always fix the issues locally and then offer the fixes to
the upstream repositories.

One of the benefits ROS brings to us is the ease of decision on where
should some code be running. As mentioned in Section [5.2.1, most robots
carry more computers on board. The various types of algorithms we use and
their constant development require high flexibility in terms of computational
power, and with ROS, running the CPU- or GPU-intensive programs on
different computers is just a matter of a few configuration lines and some
one-off provisioning. ROS also provides high-quality visualization tools like
Rqt and RViz, which we utilize in our system both during development and
for the operator console (described further in Section 5.2.10).
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Figure 5.7: Block diagram of software modules on a single UGV platform with
three main sub-systems: localization (green), detection (blue) and navigation
(yellow). Purple boxes and database indicate the main I/O of a robotic platform
that is transmitted to other agents via the MOTE (light blue) and Mobilicom
(light green) networks. Internal robot states and sensory information are repre-
sented as bubbles while modules are represented as rectangles. Initial position is
obtained from the pit crew during setup.

B 5.2.4 Database

To get a resilient and distributed communication architecture where some
links may disappear during the mission, we decided not to use the standard
single-master mode ROS supports. Instead, we use a multi-master solution
based on a custom build database (running on RocksDB no-SQL backend),
which stores both live and historical data. Each robot runs a ROS master on
its main computer, so on the robot’s local network, all computational nodes
and other supporting programs are running as in a standard single-master
ROS system. The database is running on each robot and base station and
uses broadcast messages to send its own data to neighboring nodes.

The goal is to replicate all data to all nodes in the system. To this end,
we employ an asynchronous group replication strategy, that is, the state
may not be propagated immediately and any node can serve any data to
any other node. To receive missing data, each node regularly broadcasts
requests and fills in gaps by using any data it receives. To this end, each
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database node maintains a set of active requests for all nodes and regularly
serves these requests with the data it has. Assigning messages IDs from
consecutive integers allows requesting a consecutive sub-sequence of messages
which comes into play when a robot joins other robots after some time of
autonomous exploration out of signal. Large messages are divided into chunks
and reconstructed on receivers when they are complete, with the chunks
having their byte offsets appended to their IDs.

Our implementation allows configuring several parameters of each trans-
mitted topic — e.g. whether the topic is live-only (no history, e.g. camera
streams) or the synchronization priority (so that confirmed detections are
transmitted earlier than e.g. maps). An important feature is also explicit
bandwidth limitation of the synchronization traffic, so that the physical layer
(Mobilicom) is not overwhelmed and forced to start buffering.

B 5.2.5 Localization

The ground robots deployed the localization and mapping solution devel-
oped by NORLAB (Laval University). The mapper (norlab_icp_mappen*)
is primarily intended for data captured by 3D lidars. It gains from the
stability and speed of the libpointmatcher library?| that implements a variety
of Iterative Closest Point (ICP) algorithm variants. This library and the
norlab__icp _mapper are continuously developed and maintained by NORLAB
and publicly available on Github. The performance of the mapper, based on
the ground truth provided by the competition organizers, has been satisfac-
tory. Fig.[5.8 presents the expected mapping performance given the initial
frame alignment. The presented map is based on the post-event data recorded
by the tracked Tradr robot.

B 5.2.6 Navigation

Besides the map for the localization, each ground robot builds a separate
map for navigation and exploration purposes. More in depth principles of
navigational maps are based on published [128| 129, |130]. The navigation
maps were periodically analyzed for terrain traversability to determine how to
navigate the robot to the specified location. Even we have successfully tested
the method proposed in Section [2.1} in the final, we decided to use simplified
estimation from the roughness of the terrain to ease the complexity of the
system. The Dijkstra algorithm produces plans from the robot position to
the given goal location. The cost field generated using the Distance transform
algorithm [131] has been utilized to keep a safe distance from the obstacles
or to avoid rough but traversable terrain if there is other choice.

"https://github.com/norlab-ulaval /norlab_icp_mapper_ros
https://github.com/norlab-ulaval/libpointmatcher_ros
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Figure 5.8: The mapper performance during the post-event testing. The robot
was teleoperated manually. The mapper settings are identical to the final scored
run.

B 5.2.7 Exploration

The robots create a topological map, which they share with each other, besides
the metric map created for local planning. This global topological map is used
for decentralized exploration, where each robot explores a different area of the
environment. The way the next exploration waypoint is determined from all
possible waypoints is based on the approach . In case the waypoint is far
from the robot’s actual position, the merged topological map from all robots
is used for high-level planning. For more information about exploration see
, . Exploration is invoked when the robots are in autonomous
mode. For the virtual track of the competition, they were only autonomous
mode. In the system track, the operator sometimes took over the control of
the robot.

Bl 5.2.8 Adaptive terrain traversal

The tracked robots incorporate the information from their depth sensors
and position their flippers accordingly (Chapter 4) to improve their ability
to overcome adverse terrain. Thus, flipper control was done most of the
time autonomously. This is because manual control would cause excessive
cognitive load on the operator, especially when operating several platforms
simultaneously.

The approach used in the competition consists of a state machine, shown
in Fig. where four primary states of obstacle traversability are defined.
The neutral state means folded flippers in such a way as to minimize blocking
the Lidar. Yellow states define configurations of the flippers which allow
the robot to safely climb and descend obstacles by using the front and back
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flippers as support. These are triggered when the robot is moving forward
on the flat ground, and a significant height increase or decrease is sensed in
front of the robot in a designated region. For example, in the Climbing rear
state, the rear flippers push down to raise the rear while keeping the front
flippers extended forward to shift the weight balance maximally forward and
dampen the robot when it hinges forward. Whenever the robot finishes the
ascent or descent onto the flat ground, the state resets back into neutral. The
same state machine is used for stair traversal with a modification that the
robot cannot turn while on stairs. When setting flippers for any action, we
use the natural tactile feedback of the ground by simply pressing down with
low torque. This is better than strictly conforming the flippers to a height
map which can be prone to errors.

Climbing

(rear) F\
4

Climbing
(front)

—>{ Up stairs

Descending
(front)

v
Descending

(rear)

—>{ Down stairs

Figure 5.9: Finite state machine for controlling flippers of the Absolem platform,
capable of traversing difficult obstacles and stairs. Blue and green states signify
longer lasting modes, whereas yellow states are short lasting.

B 5.2.9 Object detection

The purpose of the entire system is to detect and locate artifacts that represent
potential victims or provide a cue of their location (see Fig. 5.4/ for artifacts
definition). Therefore, every robot of our team performs the object detection
task. We have deployed a state-of-the-art neural-based computer vision
method called YOLOv3 [133] 134] for object detection on ground robots. On
UAVs, the MobileNet2 |135] was used due to limited computational resources.
The MobileNet2 serves as the feature extractor for a Single-Shot-Detector
(SSD) that, in the end, produces bounding boxes. This is a similar approach
with the YOLO, where you only look once without iterating through the
parts of the image. These detectors take an RGB image as an input and
predict the bounding boxes with their confidences, sizes, coordinates, and
class probabilities. After the forward pass of the neural network, only the
detections with confidence above the threshold are further processed. The
Fig. [5.11] depicts detected objects and false positive examples.

We obtain z and y coordinates (in the camera frame) as the center of the
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bounding box. To estimate the z coordinate, we use the known transform
between the lidar sensor and camera to project the pointcloud in the camera
frame (see Fig. [5.10). From all the points within the bounding box, we
estimate the z as a median point. All the points from the pointcloud within
the bounding box are used to compute the covariance matrix used later for
merging the detections. In case that pointcloud from the actual scan is too
sparse and no points correspond to the bounding box, we use a local map to
get the depth points. Before we process the detection further, we compare
the size of the actual objects with the predicted size of the bounding box,
and in case the expected size differs a lot, we throw away the detection.

Bag, 0.73

Figure 5.10: Detection of the bounding box and projection of the points inside
a camera frame.

Then, the detections are processed by the final position estimator [136)
, which fuses detections from different images that correspond to the
same objects using a principle similar to multi-target tracking. It helps to
improve the precision of the estimated position of the artifacts and rejects
some false positives. Each new detection creates a new hypothesis (described
by state, position estimation covariance, and the number of corresponding
measurements) or is associated with existing hypotheses based on maximal
likelihood and a gating distance. The final position of the hypotheses is
established by the application of Kalman filtering. Only if the hypothesis
is certain (covariance lower than threshold and the satisfying number of
measurements), the robot sends position, established class, and the most
representative image of the detected object to the database. This prevents
flooding of the communication network with image data and helps to lower
the number of false positives detections send to the operator.

To ease the RGB detections and to improve the chance of finding phones,
the Jetson computer was utilized to search surrounding WiFi signals and,
using weighted trilateration, estimate the position of the artefact . Since
it was necessary to detect gas in the form of elevated CO2, we used Sensorion
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buc pack 0.54-

(g) : False Backpack (h) : False Cellphone

Figure 5.11: Detection of artifacts during the challenge. Two false positives are
depicted, Backpack as the red sign in water reflection and cellphone as a piece
of paper.
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SDC30, the sensor dedicated to measuring just CO2. Using sensor data, we
extrapolated and showed values to the operator and eventual guesses where
the CO2 artifact might be. Both methods are explained in [139].

B Detection dataset

We gathered a dataset from various underground environments to train the
object detectors. It contains images from the Josef experimental mine, the
Prague subway station, the Dobrosov military fortress, the Bull Rock Cave,
and the university hallway and basement. All data was collected using the
cameras of our robots while another testing was being carried out on the
platforms or through cameras that were temporarily dismantled from the
robots. The dataset was annotated manually. See Table [5.3| for number of
annotated artifacts in the different environments. We made an automatic
data generator for the virtual competition, which generates around 100000
images. More images were added iteratively during the tests by selecting the
false positive detections.

Total Tunnel Urban Cave Misc.

Images 40373 10454 10123 7727 12069
Negative 6132 2205 2790 103 1034
Survivors 7597 2476 1559 1037 2525
Cellphones 5092 1010 1109 1171 1802
Backpacks 5635 1191 1301 1080 2063
Drills 3779 2317 12 38 1412
Extinguishers 7637 1869 247 30 5491
Vents 4747 0 3876 31 840
Ropes 4996 0 0 3575 1421
Helmets 5504 0 0 2639 2865
Cubes 2338 0 0 332 2006

Table 5.3: Dataset details with the number of annotated objects. Negative row
corresponds to the images containing only the background.

B 5.2.10 User interface

As the challenge rules allow only a single human supervisor (team operator)
to manage all the systems deployed in the mission, it was necessary to design
a reliable and easy-to-use graphical user interface (GUI) to supervise and
control the robots’ behavior and report back found artifacts. The base station
GUT is built on top of standard ROS visualization components, namely custom
rqt plugins and rviz tool. The two major parts of the GUI are realized in the
base station. One for controlling the robots (control GUI) and the second for
reporting the artifacts (detection GUI). Besides them, the operator uses one
screen to visualize the camera outputs from the robots and one screen for
debugging and necessary scripting. See Fig. [5.12] for basestation layout.
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Figure 5.12: The base station and its user interface used in the final circuit event.

Robot control GUI uses an interactive marker server and multiple custom
plugins, e.g., to capture keyboard events, in rviz for control of individual
robots. It allows to show and hide the constructed maps of individual robots
and their horizontal cross-sections to deliver the human supervisor the spatial
awareness and assign high-level commands using an interactive marker and
keyboard shortcuts. The main commands that can be sent are Fxplore, Follow
given (robot will plan the path to the selected waypoint), Force follow (robot
is going straight to the waypoint without planning - this is useful when the
robot is stuck somewhere), Stop, Clear topological map, Clear metric map
and Add abandoned area (which prohibits planning trough this area). The
UAVs have in addition the Land command, which forces the UAV to land
immediately.

The detection GUI serves to accumulate the detections from all the robots
and present these detections to the human supervisor that verifies them and
sends them to the DARPA scoring server. The GUI is realized as a custom
rqt plugin and a ROS node that visualizes the individual detections using
the interactive marker server in rviz. As the detections are transmitted to
the base station with their image, the rqt plugin presents this image to the
human supervisor. The human supervisor may iterate through the detections,
confirm or reject them, change any parameter of the detection, and finally
he may send the detection to the DARPA scoring server. The rviz visualizes
the individual robots, their path, the detections, and also the strength of the
WiFi signal emitted by the cell-phone artifact and the COy levels essential
to detect the gas artifact that is measured by the robots along their path.
The WiFi and COy levels are visualized as color-coded point clouds along the
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robot path. The rqt plugin allows switching the visualization of the individual
elements for each of the robots in rviz on and off. Further, the detections
visualized as interactive markers are color- and shape-coded based on their
status, e.g., detections confirmed and rejected by DARPA are green and red
spheres respectively, detections rejected by the human supervisor are small
grey cubes. This allows the human supervisor to recognize the state of the
detections immediately. Last but not least, the human supervisor is able to
manipulate the spatial positions of the detections, and thus manually correct
for the localization drift of the robots prior to sending the artifact positions
to the DARPA scoring server.

. 5.3 Conclusion

Our team developed a multi-robot robust system that can operate in various
extreme environments far behind domains defined by DARPA Subterranean
Challenge. From the small team of people with old robots in the Tunnel
circuit (see Fig. we grew up to the relatively big team with the newest
state-of-the-art robots and sensors (see Fig. [5.14). In the beginning, we were
focused on a single-agent robust solution. During the competition, we start
to build the fully autonomous multi-robot system on the robust base solution
we already developed. As it can be seen in Table we performed well. We
have been 3rd in the first two rounds which convinced DARPA to give us
additional funding that helps us to get new hardware. The improvement
of the autonomy of our system is confirmed by the 2nd place in the virtual
challenge, where the whole system was fully autonomous.
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Figure 5.13: CTU-CRAS-NORLAB (formerly CTU-CRAS) team at Tunnel
circuit.
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Round Position Points Price
Tunnel circuit (system) 3rd 10 $200, 000
Urban circuit (system) 3rd 10 $500, 000
Final circuit (system)  6th 7

Cave circuit (virtual) 6th 90

Final circuit (virtual)  2nd 215 $500, 000

Table 5.4: CTU-CRAS-NORLAB positions at SubT Challenge.

Figure 5.14: CTU-CRAS-NORLAB team with the robots before the final event.

B 5.3.1 Lessons learned

Participation in the DARPA Subterranean Challenge was one of the best
parts of my doctoral study. It allowed us to join the theoretical research with
the practical deployment of the system. It was a pleasure to see how our goals
and system developed during the whole competition, which took three years.
In the first experiments, we focused on single robot control. We were still
developing the system of communication, and we were far from multi-robot
coordination and autonomy as well.

When the robot has to operate in extreme conditions for one hour, it
rarely happens that the robot is still alive after the end of the mission. The
motivation for winning the competition pushes the robots to their limits
which is another reason for the failure. The common fail cases were stuck or
dropped the track, a reboot of the system due to insufficient power source,
big heat, or dropped water into the robot. We also had software failures
during the missions. We learned from the fails, and our robots started to
be robust enough to be able to explore for a longer time. We implemented
a restarting procedure that allows the robot to connect to the system even
after reboots during the mission.

From the operator’s point of view, we made a vast improvement. The
first detection GUI had only a few functions. We were able only to see the
detected artifacts and choose whether to send them to the DARPA server
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or not. The last versions allowed us to change the positions, classes, display
different images from the same artifact, adjust the brightness of the pictures,
filter all detection from some areas, and so on. That is all in an intuitive way.
The key feature in control GUI was a key binding we implemented which
saved a lot of time for the operator.

Another important thing during the mission was to drill the deployment
procedure. Setting the system with multiple computers and robots can take
a lot of time and stress. At the final rounds, we were able to set the system
quickly, which allowed us to check the whole system before starting the
mission.

There is also the drawback of the development. We always wanted to push
our system towards being better and having new features. Unfortunately,
every new update of the part of the system could potentially destroy something
different, and the testing of the system is really time-consuming. Last week’s
changes could not be tested well, and it can cause problems during the actual
missions. Unfortunately, adding the new features made our system less robust,
which cost us points in the final event. In the ideal case, it would be best to
freeze new updates for the last few weeks to test the system and debug all
the parts.
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Chapter 6

Conclusion and future work

This dissertation thesis discusses several problems in search-and-rescue robotics.
The research behind this thesis was motivated by real problems we dealt with
during our projects. The absence of dense and accurate data is a common
issue in many robotic tasks, not only in search-and-rescue scenarios.

Autonomous robots need to have dense and accurate information about
terrain in their surroundings. We proposed the approach to actively control
the newly coming solid-state lidar, which allows the users to control the
directions that will be measured. Our approach simultaneously predicts the
dense 3D map from sparse depth measurements and actively controls the
sensor with immense action space. The rays are cast to obtain the most
information for the reconstruction network. Prediction accuracy is improved
by iteratively learning the network and casting the rays in the directions
defined by reconstruction confidence. In the case of flexible terrain (e.g.,
tall vegetation), the output of the reconstruction network does not provide
relevant information for terrain traversal methods. Therefore we extended
the prediction network input by segmentation features from images, and we
enriched labels by robot poses. Using the robot poses as labels, we can predict
the supporting terrain that will support the robot body during traversal. Our
novel KKT-loss allows us to optimize the reconstruction network parameters
to predict terrain that supports the robot body, but it is not in collision. The
loss is defined as a distance from the satisfaction of Karush-Kuhn-Tucker
conditions. One of the crucial fail cases is the presence of dense smoke that
blinds the camera and spoils the laser measurements. Therefore we presented
a combined hardware and software solution that reconstructs the nearest
surrounding of the robot using our custom-built touch sensors and robot pose.

One of the main topics presented within this thesis is an active perception
problem. Besides above mentioned active 3D reconstruction method for terrain
reconstruction, we presented an end-to-end learnable method for active victim
segmentation from multi-modal data. Victim detection and segmentation are
the main problems in search-and-rescue missions. We proposed a method
that actively controls the sensor to obtain the thermal information that will
enrich the RGBD modalities obtained by other sensors. We implemented the
neural network, which predicts the gain we get by measuring the temperature
of given voxels. This information serves as an input for our proposed guided
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Q-learning method. Our method controls the narrow field-of-view thermal
sensor to increase the accuracy of the segmented victims.

Another topic discussed within this thesis is learning of policy for traversing
terrain. The proposed method autonomously controls the flippers to allow
the robot to traverse a complex terrain. Classical reinforcement learning
techniques need to evaluate the immense number of policies that have no
guarantees of safety. We have extended the relative entropy policy search
by the constraints on safety that have to be satisfied during the learning
procedure. These additional safety constraints prevent destroying the robot
and lead to faster policy convergence. The robot can safely learn to traverse
a previously unknown obstacle after only a few training iterations.

We were able to test and deploy our methods during the DARPA Subter-
ranean Challenge. Chapter [5| concludes our participation and results in this
challenge. With our team CTU-CRAS-NORLAB, we developed and deployed
a multi-robotic autonomous system for searching objects in search-and-rescue
missions. We were also able to take place on the podium in the competition
of the word best researchers.

The methods presented within this dissertation thesis contributed to the
robotics research field, in particular to the search-and-rescue robotics. All
the methods are well tested and are useable in real applications. Moreover,
the theoretical background is transferable to other research fields as well.
I see the biggest potential in the application of our novel KKT-loss. This
loss function can be used to solve different non-convex and constrained
optimization problems, without the necessity of finding explicitly its optimal
solution.
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