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Abstract. This article deals with specific states of traffic flow on a two-lane

freeway, in which statistical fluctuations of microscopic quantities (inter-vehicle gaps)

are significantly higher than in systems with absolutely random events (Poisson

systems). These anomalous states (super-random) are detected in empirical traffic

data, specifically in the fast lane at traffic densities up to 25 vehicles per kilometer.

The origin of these states is then explained mathematically (using the theory of balance

particle systems and tools of random matrix theory), physically (by means of an

one-dimensional particle gas subjected to local perturbations caused by overtaking

cars) and empirically (using an analogy with phenomena observed in photon counting

experiments). In the article we show that overtaking maneuvers, when vehicles from

a slow lane are injected into a fast-lane stream of faster moving vehicles, disrupt a

local balance in microstructure of fast-lane stream and cause atypical arrangement

of vehicular positions, that is very rare, generally. With help of original numerical

model we demonstrate that the anomalous states detected are identical to equilibrium

states formed in a stochastic particle gas with a potential containing, in addition to a

repulsive component, also an attractive component.
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1. Introduction

During the last twenty years, the statistical approaches applied to driven many-particle

systems have represented key methods in the discovery, explanation, and description of

specific macroscopic and microscopic phenomena in traffic flow [1, 2, 3, 4, 5, 6]. When

investigating the microstructure of traffic flows, it has been shown that distributions of

microscopic traffic quantities are highly sensitive to small changes in traffic density or

intensity [4, 7]. As the values of these macroscopic variables change, both the average

values of the micro-quantities and their variances change significantly [8, 9]. This indi-

cates that the parametric space, within which the parameters of the random variables

(commonly analyzed in traffic disciplines) are detected, is quite extensive. Fortunately,

it appears that when traffic data is analyzed taking into account this high sensitivity

to the values of macroscopic variables (i.e. applying 3s-unification procedure presented

below) suitable candidates for theoretical distribution curves can be found in a very

compact form. In addition, respective probability distributions reflect all the mathe-

matical properties required by the general theory of one-dimensional particle systems

[10, 11]. This situation opens up the possibility to answer advanced questions concern-

ing an inner structure of vehicular ensembles and its temporal evolution, which is the

content of this paper. For correctness we add that there are a number of other features

of vehicular traffic that can not be described by a simplified approach based on the

above-mentioned analogy with particle gas. This is due to the fact that vehicular traffic

represents, as is well known, a complex physical system.

With increasing availability of single-vehicle data, the number of scientific challenges

associated with the traffic microstructure and the time-space evolution of microscopic

quantities has been growing. In this text we will try to decipher the essential char-

acteristics of the spatiotemporal arrangement of traffic samples extracted from traffic

measurements carried out on two-lane expressways and put them in the context of traffic

theory. For these purposes we will use segmentation-oriented analysis of traffic data,

selected parts of Random Matrix Theory [12], mathematical theory of balanced particle

systems [11], and appropriate physical analogies to the researched topic.

To be specific, in this article we will try to show that traffic flow violates, under

certain circumstances, a set of theoretical limits that should not be exceeded in typical

particle systems. We show that in a main lane the traffic system at the microscopic

level behaves orderly, while the flow in a fast lane shows unexpected statistical anoma-

lies in a certain density region. They originate in more complex interactions between

vehicles, which leads to violation of assumptions in relevant mathematical theorems.

From a mathematical point of view, these anomalous states represent the so-called

super-Poisson states (super-random, less formally), which were already detected e.g. in

photon counting experiments, in measurements of atomic resonance fluorescence, or in

quantum optics [13, 14, 15]. In these experiments, thermal light shows intensity fluctua-
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tions as its inherent aspect and as a result of the fact, that there is a statistical tendency

for photons to arrive simultaneously at a detector. This implies the so-called photon

bunching – a phenomenon generally attributed to the fact that photons are Bosonic and

known as the Hanbury Brown and Twiss effect [16].

The paper is organized as follows. In the following section, we present empirical

traffic data analyzed in this article, the method of their measurement and their

mathematical structure. In the third section, we briefly mention the creation of a

fundamental traffic map. The fourth section focuses on a detailed description of the

unification procedure designed for processing data measured on real roads. In the next

part, we present the so-called theory of balance particle systems – a mathematical

tool for analytical predictions in the researched area. In the sixth section, we classify

systems or states of a given system according to the degree of statistical compressibility.

Using the instrument of statistical compressibility we then define sub-Poisson and super-

Poisson states. The latter represent, from a certain point of view, anomalous statistical

states, because the rate of their fluctuations significantly exceeds the limit reached in

Poisson systems with absolutely random events. In the seventh section we detect these

super-Poisson states in vehicle-by-vehicle data and in the eighth section we explain the

reasons for their occurrence.

2. Empirical traffic samples

Single-vehicle data analyzed in this paper have been measured during 90 days at several

supersaturated segments of highway circuit R1 Prague, Czech Republic by technology of

induction double-loop detection. Data records containing twelve data-files, each having

data from measurements lasting three months approximately, have been provided by

The Road and Motorway Directorate of the Czech Republic. The total volume of data

is approximately 55 millions. Typical property of these data sets is that they have been

measured at the same time-fixed location (a so-called detector line). Typical outputs of

all similar traffic measurements look like

T (in) = {τ (in)k ∈ R | τ (in)k−1 < τ
(in)
k ∧ τ

(in)
0 := 0}, (1)

T (out) = {τ (out)k ∈ R | τ (in)k−1 < τ
(out)
k−1 6 τ

(in)
k < τ

(out)
k ∧ τ

(out)
0 := 0}, (2)

Υ = {vk ∈ R
+
0 | k = 1, 2, . . . , N}, (3)

Λ = {ℓk ∈ R
+ | k = 1, 2, . . . , N}, (4)

where T (in) and T (out) collect instants τk when a front/rear bumper of a kth car has

intersected a detector line and Υ and Λ collects individual velocities vk and lengths ℓk
of cars, respectively.

If loop measurements are accompanied by image processing technology then

additional data sets

Ξ(front) = {ξ(front)k ∈ R | ξ(front)k < ξ
(front)
k−1 ∧ ξ

(front)
0 := +∞},
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Ξ(rear) = {ξ(rear)k ∈ R | ξ(rear)k < ξ
(front)
k 6 ξ

(rear)
k−1 < ξ

(front)
k−1 ∧ ξ

(rear)
0 := +∞},

collecting positions of front/rear bumpers at the fixed time, are to disposal. However,

such a doubled measurements are very rare, which results in the fact that locations

ξk (in contrast to instants of time τk) belong to indirectly determined traffic quantities.

Therefore, we refer instants of time τk, velocities vk, and lengths ℓk as primary quantities,

whereas locations ξk are referred to as secondary quantities. Based on these quantities

one can define empirical values of time headways/clearances using respective formulas

tk := τ
(in)
k − τ

(in)
k−1, zk := τ

(in)
k − τ

(out)
k−1 .

Distance headways are then defined by

sk := ξ
(front)
k−1 − ξ

(front)
k

and distance clearances read

rk := ξ
(rear)
k−1 − ξ

(front)
k .

Graphically, all these quantities are visualized in figure 1. Note that equalities sk = vktk,

rk = vkzk are valid only provided that an individual velocity vk is constant during time

interval [τ
(in)
k−1, τ

(in)
k ], which is less probable assumption, especially when τ

(in)
k ≫ τ

(in)
k−1.

It means that loop measurements without additional processing of video/photography

generate time clearances and time headways as primary variables, whereas distance

headways/clearances represent secondary variables and their approximative values sk ≈

vktk, rk ≈ vkzk can be therefore burdened by systematic errors. Moreover, one finds

rk = ξ
(rear)
k−1 − ξ

(front)
k−1 + ξ

(front)
k−1 − ξ

(front)
k = sk − ℓk−1.

Mathematically, all the quantities from the previous text represent non-negative

continuous random variables and are therefore characterized by a standard statistical

description using associated probability densities and distribution functions. Consider

now a sequence (Xk)
N

k=1 of random variables of the same type (clearances, headways).

From a statistical viewpoint the empirical headways xk represent individual realizations

of random variables Xk and one can model respective distributions by standard

statistical routines. Generally accepted premise in Vehicular Headway Modelling says

that X1,X2, . . . ,XN are identically distributed provided that one analyzes homogeneous

flows, where macroscopic quantities (state variables) are steady in time and a rate of

long vehicles is low. To a certain degree of simplification it used to be sometimes

speculated that X1,X2, . . . ,XN are independent identically distributed (i.i.d.), which is

useful simplifying assumption suitable for theoretical calculations [17, 18, 19]. In fact,

correlations among headways are significant [20, 21], which points to a more complex

interactions among drivers.
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Figure 1. Single-vehicle characteristics obtained by cross-section detectors

(marked with zk and tk) or by image processing technology (marked with rk and

sk).

3. Fundamental map of vehicular traffic

As is usual, single-vehicle samples are characterized by the three fundamental traffic

quantities: traffic density ̺, traffic intensity I, or average velocity V. For a given single

sample

Ξ =
{

(τ
(in)
k , τ

(out)
k , vk, ℓk) ∈ T (in) × T (out) ×Υ× Λ : k = 1, 2, . . . , K

}

(5)

of K succeeding cars one can calculate the single-sample intensity I = K/(τ
(out)
K

− τ
(in)
1 )

and the single-sample mean speed V = K
−1

∑

K

k=1 vk. Moreover, the hydrodynamics-like

expression ̺ = I/V used to be usually accepted as a plausible approximation for the

local density [22]. Then, applying the same computational routine for all available data

samples i = 1, 2, . . . , m we acquire binary relations ΩID = {(̺i, Ii) : i = 1, 2, . . . , m} and

ΩVD = {(̺i, Vi) : i = 1, 2, . . . , m}, whose graphs can be used for synoptic visualizations

of macroscopic properties of traffic flow. These graphs represent fundamental maps of

a given traffic problem.

4. Data processing: 3s-unification procedure

Specific and well-known signs of vehicular traffic are (see [22, 23]): a wide scattering of

flow-density data in the congested regime, chaotic evolution of state variables, repetitive

sharp increases of density, and a propagation of kinematic waves in a direction opposite

to vectors of vehicular velocities. All these effects cause that larger samples of succeeding

vehicles show a significant non-homogeneities. Their microstructure is therefore also
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non-homogeneous [24], which results in the fact that associated probability distributions

are not unimodal and produce, in contrast, courses typical for mixed systems composed

from several different distributions.

To gain homogeneous characteristics one has to apply the following 3s-unification

procedure that prevents an undesirable mixing of states with different statistical

properties (stochastic resistivity and rigidity), different vehicular properties (average

headways, clearances, velocities and their variances) and psychological properties

(vigilance of drivers, reaction times, decision-making strain).

4.1. Sampling

The first sub-routine in a three-phase unification procedure is the sampling, i.e. division

of data into homogeneous samples of several neighboring cars.

Consider the data sets (1)–(4), a sampling size K, and number of samplesm.Without

loss of generality, we assume that mK = N. For each single sample i ∈ {1, 2, . . . , m} we

denote

Gi = {(i− 1)K+ 1, (i− 1)K+ 2, . . . , iK}

a respective index set and extract relations Ω
(i)
ID

and Ω
(i)
VD

as introduced in subsection

3. Moreover, we define sample-adjoint sets of individual headways (time and spatial)

Ti := {tk : k ∈ Gi} and Si := {sk : k ∈ Gi}, sets of individual clearances (time

and spatial) Zi := {zk : k ∈ Gi} and Ri := {rk : k ∈ Gi}, and sets of velocities

Υi := {vk : k ∈ Gi} and lengths Λi := {ℓk : k ∈ Gi}. From this approach it follows that

the ith sample is described by the sample-adjoint values ̺i, Ii, Vi and by the random

sets Ti, Si, Zi, Ri,Υi,Λi.

4.2. Scaling

As understandable, the mean values 〈Ti〉, 〈Si〉, . . . , 〈Λi〉 of the random data sets

Ti, Si, Zi, Ri,Υi,Λi. can be easily enumerated by means of the values ̺i, Ii, Vi. Indeed,

it holds

〈Ti〉 = 1/Ii; 〈Si〉 = 1/̺i; 〈Υi〉 = Vi (6)

and 〈Ri〉 = 〈Si〉 − 〈Λi〉. It means that for traffic micro-quantities the statistical

characteristics of the first order are hidden in relations ΩID and ΩVD. Therefore, a

scaling of individual micro-quantities represents no loss of information. Above that,

the standard unfolding procedure (usually applied in many statistical studies aiming

to reveal a non-trivial stochastic universality like in Random Matrix Theory [12, 9])

includes a scaling procedure as its inherent part.

For empirical/experimental data the scaling should be applied as follows. Traffic

micro-quantities are converted to associate scaled alternatives. Such a conversion is

here demonstrated on the example of the sample-adjoint set Zi := {zk : k ∈ Gi} of time
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clearances. Associate set Yi := {yk : k ∈ Gi} of scaled clearances is calculated using a

definition

yk =
zk · K

∑

k∈Gi
zk

=
zk
〈Zi〉

(k ∈ Gi), (7)

which ensures that 〈Yi〉 = 1. In analogy, we define scaled spatial clearances by

xk =
rk · K

∑

k∈Gi
rk

=
rk
〈Ri〉

(k ∈ Gi). (8)

4.3. Segmentation

The final step of the three-phase unification procedure is forced by the fact that most

of traffic variables are significantly changing if the state variables vary. It means that

random variable characteristics of the first, second, third, and fourth order (average,

variance, skewness, and kurtosis, respectively) strongly depend on actual values of traffic

macro-quantities. Naturally, a mixing of states with different values of fundamental

variables is significantly undesirable. For this reason, one has to analyze data from small

sub-area of a fundamental map only. To be specific, denoting Ψ an arbitrary subset of

the fundamental map the segmentation procedure selects those samples having values of

the fundamental variables belonging to Ψ. Therefore, we introduce the segmented index

set

FΨ := {i = 1, 2, . . . , m : (̺i, Ii) ∈ Ψ} . (9)

Then, statistical analysis intended is performed separately for scaled micro-quantities

YΨ ×XΨ ×ΥΨ := {(yk, xk, vk) ∈ Yi ×Xi ×Υi : i ∈ FΨ ∧ k ∈ Gi} (10)

extracted from the segment Ψ.

5. Balanced particle systems

5.1. Headway distribution in vehicular streams

As is apparent from considerations presented in Appendix 10.1, as well as from numerous

traffic data analyzes [6, 7, 8, 9, 11, 18, 21], spatial and temporal clearances between

vehicles are statistically distributed according probability density

h(x) = AΘ(x)e−βϕ(x)−λx, (11)

where ϕ′(x) correspond to a repulsive hard-cored force between succeeding vehicles,

preventing vehicle collisions. It means that

ϕ′(x) 6 0, lim
x→0+

ϕ′(x) = −∞, lim
x→+∞

ϕ′(x) = 0. (12)

Therefore, regardless of the specific choice of potential ϕ(x) the headway distribution

(11) belongs to the specific family of probabilistic densities described immediately below.
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5.2. The class of balanced functions

The class of balanced functions B is the space of piecewise continuous functions f(x)

on R with Dom(f) = R, Ran(f) ⊂ [0,+∞), supp(f) ⊂ [0,+∞), for which there exists

positive number κ so that

(∀α > κ) : lim
x→∞

f(x)eαx = +∞ ∧ (∀α < κ) : lim
x→∞

f(x)eαx = 0 (balance axiom).

The number κ is referred to as balancing index and denoted by inb(f). In fact, belonging

of headway distribution to the space B must be met for all one-dimensional particle

systems, where interactions are restricted to a few neighboring particles only [11], which

definitively corresponds with real-road traffic. In addition, under the conditions (12)

applied to p.d.f. (11) the following implication holds

µ1 = 1 =⇒ λ > 1 ∧ µ2 6 2, (13)

where µk =
∫

R
xkh(x) dx is k−th statistical moment. Moreover, limiting values are

λ = 1, µ2 = 2 are obtained for Poissonian system, which is either a system with

absolutely non-interacting particles, i.e. ϕ(x) = 0, or stochastically irresistible system

where β = 0. These variants are described by the exponential headway distribution

h(x) = Θ(x)e−x, for which therefore the statistical variance VAR(X ) = µ2 − µ2
1 is equal

to one.

5.3. Balanced particle systems

Now we introduce the concept of the so-called Balanced Particle Systems as an

effective mathematical instrument for description of statistical properties of vehicular

microstructure. Balanced Particle System (BPS) is understood as a sequence (Xk)
∞

k=0 of

random multiheadways, i.e. gaps between the reference particle k = 0 and the particle

indexed by k + 1, defined by

Xk :=

k
∑

i=0

Ri,

where headways between succeeding particles R0,R1,R2, . . . are non-negative,

identically distributed via the balanced p.d.f. g(x) ∈ B referred usually to as generator

of the BPS, i.e.

R0,R1,R2, . . . ∽ g(x).

Illustratively, it is visualized in the figure 2. The Balanced Particle System is

being termed the Independent Balanced Particle System (iBPS), if R0,R1,R2, . . . are

independent variables. In this case

Xk ∽ ⋆k
i=0 g(x),

where ⋆ symbolizes a convolution. Besides the above-discussed continuous description

the particle systems can be described also via a interval frequency NL, which represents
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the number of particles on an interval of length L lying immediately beyond the reference

particle. These continuous and discrete descriptions, i.e. headways vs. frequencies,

of the same particle system are, as understandable, firmly linked by mathematical

relationships [28, 29, 10].

Figure 2. Schematic representation of a headway-sequence (Rk)
∞

k=0 and

multiheadway-sequence (Xk)
∞

k=0.

A privileged place among the mathematical instruments for BPS is occupied by the

statistical rigidity [12, 25, 26]. This continuous function, frequently used in Random

Matrix Theory [12], is defined by

∆(L) =

∞
∑

k=0

(k − L)2 P[NL = k].

Together with the expected value E(NL) =
∑

∞

k=1 kP[NL = k] the statistical rigidity

represents an extremely useful and robust mathematical tool for classification of the

intensity of random fluctuations in one-dimensional systems. It has been successfully

used in investigations of vehicular systems as well [3, 6]. For example, previous analyzes

of traffic and pedestrian data [27] have quite convincingly distinguished behavior of the

rigidity in the both systems, as can be clearly seen in the figure 3. This analysis shows

that pedestrian systems are, in contrast to vehicular flows, much more organized. i.e.

they are much more closer to deterministic processes than strongly stochastic vehicular

transport.

Moreover, it has been shown in [28, 29, 10] that ∆(L) is linear-like function, for

which

∆(L) ≈ χL+ δ + o(L2) (L → +∞),

where χ > 0, δ ∈ R are called a compressibility [25], and deflection, respectively.

Analytical studies have proven [10] that the compressibility in iBPC can be expressed

by means of the moments of generator g(x) as

χ =
µ2 − µ2

1

µ3
1

=
σ2

µ3
1

, (14)
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Figure 3. Graphs of the statistical rigidity analyzed for several pedestrian

experiments (see [27] for details). The gray zone shows a region of vehicular

rigidities, i.e. empirical statistical rigidity detected for vehicular traffic is usually

a curve lying in this zone.

where µk. is k−th statistical moment associate with the generator of the BPS and

σ2 =
∫

R
(x− µ1)

2g(x) dx is the variance.

6. Classification of random systems according to compressibility

Basically, for typical theoretical or empirical systems (energy levels in quantum chaotic

systems, eigenvalues of random matrices, spring chain, movement of a crowd in the

corridor, Dyson’s Coulomb gas, movement of vehicles on a single lane) three categories

of stochastic behavior were detected. The first category consists of the Poisson systems

(PS) corresponding to ensembles of uncorrelated compressible levels. In such ensembles

(after being scaled to µ1 = 1), the statistical rigidity has a purely linear course ∆(L) = L

and its graph creates a natural upper bound for all one-dimensional stochastic systems

investigated so far, because Poisson system is an ensemble of absolutely uncorrelated

events, whose fluctuations are therefore the most intense. Compressibility of the system

is equal to one. The lower boundary is defined by the statistical rigidity of deterministic

systems (DS), which are absolutely rigid. An example of such a system is the one-

dimensional system of electrically-charged balls on a circle, whose equidistant particle

arrangement does not allow any statistical deviations. It leads to zero statistical rigidity

and compressibility χ = 0. In RMT interpretation, the zero-rigidity states correspond

to a system of rigid, incompressible levels (like for quantum harmonic oscillator).
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Statistics in many other systems experience a crossover from DS to PS and are

located between the two boundary curves (see figure 4), i.e. value of compressibility

lies between 0 and 1. We refer to these systems as sub-Poisson systems. These systems

include the well-known ensembles GUE/GOE of unitary/orthogonal random matrices,

but also systems of pedestrians moving in a narrow corridor [27] or a set of vehicles

moving on a single lane [6].

Figure 4. Classification of states in stochastic systems according to the statistical

rigidity.

In a simplistic formulation, i.e. for iBPS with scaled headways, this division can

be differentiated as follows: Whereas in the Poisson systems the standard deviation of

particles headways is equal to the mean value, in the deterministic systems it is zero.

In sub-Poisson systems, this value lies between zero and one.

From the implication (13), which can be applied under the condition (12), it

directly follows that variance of scaled headways is less than one. It means that all

particle systems with a purely repulsive interaction (i.e. F (x) = −ϕ′(x) > 0) where,

in addition, β > 0 are sub-Poissonian, since formula (14) implies that for the associate

compressibility it holds χ = VAR(X ) = σ2 = µ2 − 1 < 1. Thus, for creating a super-

Poisson ensemble with χ > 1, particle interaction must also include an attractive

component.
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7. Detection of super-Poissonian states in vehicular flow

7.1. Super-Poisson systems

A system or state of a system with compressibility greater than one is considered

to be an super-Poissonian. Compared to other types of systems, the occurrence of

the super-Poissonian systems is very infrequent. Actually, many physical systems can

never be in the super-Poissonian phase. A representative example of such system is

the above-mentioned thermodynamic system of point-like particles with a short-ranged

repulsion between succeeding particles. Here, the inter-particle headways R0,R1,R2, . . .

are i.i.d. random variables, which corresponds to the theoretic concept of iBPC. Also

the conditions from the section 5.2 are fulfilled. It means that the compressibility χ is

equal to the variance VAR(R) and VAR(R) 6 1 according to (13).

Figure 5. Statistical rigidity of freeway data for the selected segments ΩVD (see

below) in a main lane. Vehicle-by-vehicle data have been collected during 90

days at freeway circuit R1 (located near Prague, Czech Republic) by technology

of induction double-loop detection. Specifically: a) ΩVD = [5, 6] × [100, 115], b)

ΩVD = [15, 17]× [100, 115], c) ΩVD = [20, 22]× [90, 105], d) ΩVD = [25, 27]× [80, 100],

e) ΩVD = [30, 32]× [10, 80], f) ΩVD = [40, 45]× [10, 80], g) ΩVD = [60, 65]× [10, 80].

[units: veh/km × km/h]

Super-Poisson systems, whose statistical fluctuations exceed fluctuations observed

in systems with totally independent/uncorrelated events, are therefore very rarely

discussed in the literature.
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7.2. Statistical rigidity of vehicular data samples

Statistical analysis of empirical traffic data, i.e. a course of statistical rigidity detected

for specific segments, confirms that states of traffic flow in a main lane remains in the

sub-Poisson territory – see figure 5. However, much more interesting behavior is detected

when analyzing fast-lane data. Whereas some fast-lane samples lie in the territory of

sub-Poisson states, as well, the statistical rigidity of other samples surprisingly intersects

the territory of super-Poisson states. The latter represents data samples measured for

lower traffic densities, when the traffic is in the free or transition phases – see figure 6.

Figure 6. Statistical rigidity of freeway data in a fast-lane traffic flow. Data

visualized have been extracted from the same segments as those mentioned in

capture of figure 5.

More detailed analysis of the real-road rigidity has been carried out (according

to the 3s-segmentation procedure) as follows. First of all, a fixed segment Ψ has been

defined as a density band Ψ = [̺, ̺+5 veh/km], where the traffic density ̺ is a parameter.

From the entire record it has been then extracted data sub-samples (with the sampling

size K = 50) belonging to the given segment Ψ. For the resulting Ψ−adjoint set of traffic

micro-quantities (clearances, headways, velocities, and so on) it has been calculated a

course of statistical rigidity, which is illustratively shown in figures 5 and 6. With help

of robust regression methods, eliminating the curvilinear behavior of rigidity near the

origin, we have quantified the value of compressibility χ. Changing the traffic density ̺ in

a segment Ψ we have obtained a dependency χ = χ(̺) describing of how rigid the traffic

streams is. Results of this analysis are plotted in figure 7. They confirm that χ < 1 for

all segments of a main lane. The same behavior is visible for fast-lane data extracted
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from a congested traffic phase for densities larger than 25 veh/km. Contrariwise, free-

flow compressibility exceeds the border value χ = 1, which means that associate traffic

states are super-Poissonian.

To eliminate doubts about the universality of this anomalous behavior we have

analyzed several independent vehicular data-samples as well, mainly vehicle-by-vehicle

data measured on the Dutch two-lane freeway A9. Indeed, respective compressibility

shows (see figure 7) similar features as those described above. Furthermore, in Appendix

10.4 we show that super-random traffic conditions can also be found in traffic situations

where speed of vehicles is significantly reduced by regulations prohibiting to cross a

certain speed limit. Besides, analogous behavior has been observed also in [33].

8. Explanation of super-Poissonian behavior

The performed test reveals very interesting discrepancies between main-lane and fast-

lane vehicular streams. However, for densities greater than 40 veh/km it can hardly be

distinguished between both lanes. The reason for such behavior is following. At high

densities, lane changes related to overtaking vehicles are extremely improbable. Both

lanes are significantly synchronized and the flow in them is equivalent more or less. A

completely different situation occurs for flow at lower densities, where significant freedom

for drivers’ decisions causes inhomogeneous division of vehicles into two lanes. While

drivers, who prefer slower driving, do not change lane, other drivers take the opportunity

to overtake slower vehicles and shift to a fast lane. This situation leads to more rigid

arrangement of vehicles in a main lane reflecting stronger orderliness of vehicles. On the

other side, in a fast lane one can recognize behavior whose stochastic level is more intense

than for absolutely stochastic system of randomly distributed particles – Poissonian

system. It means that these traffic states are super-random.

8.1. Explanation based on hypothesis of independence of traffic flows in different traffic

lanes

Under the simplistic assumption that the flows in both lanes are independent, the above-

discussed difference between the statistical rigidities measured in the two lanes can be

explained as follows. In view of the theoretically proven fact that in particle systems

with a purely repulsive force component (see the last paragraph of section 6), the

compressibility is undoubtedly less than or equal to one, it can be argued with certainty

that the interaction between fast-lane vehicles contains an attractive component in

addition to the commonly-used repulsive component. This follows directly from the

considerations discussed in the previous text.

Above that, in Appendix 10.2 it is shown that traffic microstructure of two

dependent flows (in the main and fast lanes) is the same as in particle systems, whose

mutual interactions are composed of attractions and repulsions.

Therefore, being inspired by outputs of the rigidity test we suggest the dynamic
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Figure 7. Compressibility of Czech and Dutch freeway data.

description combining the both, attractive and repulsive components. To be specific, a

2-component force/potential proposed may be written as

F (x) = −
κ

x
+

1

x2
, ϕ(x) = κ ln(x) +

1

x
, x > 0, (15)

respectively, where κ > 0 is the constant expressing a ration between repulsive and

attractive components. Thus, the potentials used commonly in the transportation

literature [7, 8, 6, 30, 31, 5] represent, in fact, special purely repulsive variants of (15),

where κ = 0.

The above-suggested force description implies the clearance distribution, which

is described mathematically via two-parametric family: Generalized Inverse Gaussian

distribution – GIG [32]

gα,β(x) = Ax−α
e
−

β

x e
−λx (x > 0), (16)

where α > 0, β > 0 represent distribution parameters. Positive constants A = A(α, β),

λ = λ(α, β) ensure the proper normalization and scaling, i.e. µ0(g) = µ1(g) = 1.

Parametr α is connected to a force constant κ via α = κ · β. Therefore, for purely

repulsive potentials it holds α = 0, whereas for potentials with a significant attractive

component it holds α > 0.

A procedure estimating values α, β from empirical traffic samples is based on

standard Minimum Distance Estimation method. It means that we minimize the

L2−distance

σ(gα,β, h) = ‖gα,β − h‖ =

(
∫

∞

0

(gα,β(x)− h(x))2 dx

)1/2
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between the empirical histogram-function h(x) and p.d.f. (16), i.e. we solve a

optimization problem

(α̂, β̂) = argmin α∈R,β>0 σ(gα,β, h).

Figure 8. Estimated value of the force coefficient κ extracted from empirical

traffic samples by means of Minimum Distance Estimation method. Estimation

procedure has been applied to distance-clearance distributions analyzed in the

same segments as discussed in section 7.

Estimated values β̂ and κ̂ are visualized in figures. 8 and 9. As apparent,

statistical resistivity of segmented samples shows almost linear increase with traffic

density, which means that statistical self-organization of vehicular systems grows from

slightly correlated states being close to non-correlated events in Poissonian systems to

strongly organized states, which converge (for resistivity approaching to infinity) to

absolutely rigid deterministic systems. The behavior of the second parameter show

considerably more interesting features. For congested traffic regime (with traffic density

above 30 veh/km) the force coefficient κ gains very low values, which means that a

leading interaction term is a repulsion between succeeding cars, which holds similarly

for both lanes. However, for free-flow and transition regimes there is a significant

difference between fast and slow lanes. Whereas main-lane vehicles are attracted to

their forerunners quite weakly, for fast-lane drivers the influence of a attractive force

component prevails over a repulsive component. Such a difference between both lanes

clearly distinguishes a competitive way of driving in fast lanes from tranquil maneuvering

of cars in a main lane. It is also very clear from figure 9 that the aggressive nature of

fast lane maneuvering is suppressed in the condensed phase due to the increased traffic
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density, when an aggressive driving style may be dangerous. The increase in traffic

density then visibly causes synchronization not only in driving style, where the ratio

between attractive and repulsive force component is practically the same in both lanes,

but also in the stochastic synchronization in vehicular microstructure as the respective

headway/clearance distributions are very similar in both lanes.
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Figure 9. Estimated value of statistical resistivity β extracted from empirical

traffic samples by means of Minimum Distance Estimation method.

Such an argumentation has, however, two substantial drawbacks. The premise

of independence of traffic streams in the fast and slow lane is at least debatable. In

fact, the both streams are strongly dependent, predominantly for intermediate traffic

densities. Moreover, the theoretical assumption of statistical independence of succeeding

headways/clearances, which was used in the theoretical concept of the balanced particle

system, is not reasonable in some cases [21]. Therefore, it is necessary to consider the

foregoing considerations as illustrative only. However, they will help us to comprehend

why certain traffic samples show a higher rate of fluctuations than systems in which the

values of selected quantities are completely random.

8.2. Explanation based on concept of vehicular bunching

Against the expectation, the statistical compressibility gained for the low-density fast-

lane traffic samples – see figure 7 – takes on values higher than one. It makes the

associate state super-Poissonian. Analogously, super-Poissonian distributions have been

found for example in photon counting experiments and statistics of light, in quantum

optics [13, 14, 15]. In these photon experiments, it has been revealed a statistical
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tendency of photons to arrive simultaneously at a detector, which results in fact, that

the corresponding probability distribution of photon arrival time at the detector is super-

Poissonian. This phenomenon, called photon bunching, is attributed to the fact that

photons are Bosonic. In physics it is known also as the Hanbury Brown and Twiss effect

[16].

Super-Poissonian behavior of vehicular traffic, revealed only in multi-lane traffic

data-samples, originates in the drivers lane-changing behaviour causing a vehicular

bunching in a fast lane of a freeway. Imagine a common traffic situation experienced

on freeways. A driver in the slow lane intends to overtake a slower vehicle and starts

to change to the fast lane. When there is a vehicle moving in the fast lane approaching

to the lane-changing vehicle, it might need to slow down in order to avoid collision.

When there are more vehicles moving in the fast lane, they are slowed as well, which

forms a bunch of vehicles moving within a close distance. The bunching has the same

physical effect as the presence of attractive forces in the particle systems discussed

above. Moreover, not many of such overtaking manoeuvres originating in the slow lane

are necessary to block the fast lane locally, which results in traffic intensity fluctuations

in the fast lane. As a consequence, the fast lane exhibits super-Poissonian like statistics

for traffic densities up to 25 vehicles per kilometer. To support these assertions we

show in figure 10, how a rate of fast-lane vehicles, whose speed exceeds the permitted

limit 130 km/h, depends on traffic density. Indeed, for densities above 25 vehicles per

kilometer this rate is essentially zero.
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Figure 10. Density-dependent rate of vehicles exceeding the permitted speed

limit (and other limits) for a fast freeway-lane.
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An interesting parallel with super-Poissonian states on freeway can be found in the

field of traffic safety, as well. Here the similar effect is known as over-dispersion and

it used to be modelled by means of the mixture of Poisson distributions whose single

parameter is distributed according to two-parametric Gamma distribution. This leads

to the negative binomial distribution describing crash-frequencies [34, 35].

9. Summary

For this paper the leveling and well-researched system is the so-called Poisson system,

i.e. a one-dimensional particle system whose occurrences of particles on an interval of a

given length are subject to a well-known Poisson distribution. This system is, in fact, a

system with an absolute degree of randomness, because the locations of its particles are

chosen completely at random, without any correlation between positions of individual

particles. Therefore, this system is usually understood as a system with the maximum

rate of statistical fluctuations.

For the purposes of this paper, these fluctuations are quantitatively described using

a well-established tool called statistical rigidity, which represents the statistical variance

of the number of particles occurring on the interval of length L. The statistical rigidity

in Poissonian systems has a purely linear course ∆(L) = L. Most known physical,

biological, socio-dynamic systems, however, show a lower rate of fluctuations, when the

slope χ of the linear asymptote for statistical rigidity ∆(L) ≈ χL + µ is less than one

(sub-Poisson systems). The slope χ, representing the derivative of statistical rigidity

performed in the region of large L, is referred to as statistical compressibility. With the

help of the instrument of compressibility, it is then possible to straightforwardly classify

individual states of a one-dimensional stochastic system. For χ = 1 it is a Poisson

system, for 0 < χ < 1 it is a sub-Poisson system. A zero compressibility indicates a

purely rigid system without any fluctuations.

However, in this article the main objects of the analyzes are the so-called

super-Poisson states. These are the states, in which the statistical fluctuations of

selected statistical quantities are higher than fluctuations in the Poisson system. The

compressibility of such a system is therefore greater than one, i.e. the rigidity graph

rises steeper than 45 degrees. Super-Poisson states have been revealed by analyzing

vehicle-by-vehicle data measured in a fast lane at densities not exceeding 25 vehicles

per kilometer. In other cases, the associate traffic states are sub-Poissonian.

Empirical explanation for the formation of super-random states is based on an

analogy with photon counting experiments, where the presence of super-random states

has been detected, as well. As in the theory of Hanbury Brown and Twiss effect, we

also explain the origin of these states using a bunching. Vehicular bunching (according

to our interpretation) occurs when vehicles in the fast lane are forced to brake due to

a vehicle currently moving from the slow to the fast lane. This situation leads to the

formation of local clusters, which – from a global perspective – represent an anomalous

subgroup of vehicles. The presence of these local clusters then leads to an increase in
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fluctuations on a global scale. However, these effects cease as soon as the increased

traffic density prevents overtaking.

In the article, this argumentation is justified by a simple traffic model, in which

a steady-state arrangement of vehicles in the fast lane is disrupted by overtaking

maneuvers of vehicles from the slow lane. Indeed, the results of our simulations confirm

that the inclusion of main-lane vehicles in the fast-lane flow causes a transition of the

system from the sub-Poisson phase to the super-Poisson phase. Furthermore, it is

shown that these inclusions have the same effect as if they were present also attractive

stimuli between elements in the system. It means that traffic microstructure resulting

from overtaking is identical with the microstructure, which is spontaneously formed

in a stochastic particle-system with a force-description containing, in addition to a

traditional repulsive force-component preventing vehicle collisions, also an attractive

component. Its existence may be due either to the competitiveness of drivers, when

more sporty drivers try to compete with others, or/and it may arise indirectly during

overtaking maneuvers, where vehicles in a faster lane are approaching the vehicles that

have just completed an overtaking maneuver and do not yet have the appropriate speed.

Statistical detection, based on standard estimation procedures applied to clearance

distributions, made it possible to estimate the degree of these attractive forces during

changing traffic conditions. In accordance with an intuitive idea, it has indeed been

shown (see figure 8) that a more significant attractive component is present only in the

fast lane as far as current traffic parameters allow vehicles to overtake. As soon as the

traffic density reaches a critical value (here approximately 25 veh/km), driving in both

lanes is significantly synchronized and overtaking processes cease. At the same time,

the considered attractive force-component also disappears.

All the above argumentations are supported by the presented results of the

statistical analyzes. In addition to the results already mentioned, it is also worth noting

that the detected statistical resistivity β (i.e. stochastic-noise resistance) has a very

similar course in both lanes (see figure 9), which means that (in contrast with attractive

force component in figure 8), the noise level in both lanes is practically the same. In

addition, it is also necessary to mention that super-random states do not occur on

one-way single-lane roads, which fully supports the above-mentioned explanation.
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035020.
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10. Appendix

10.1. Stochastic many-particle gas – physical realization of the balance particle system

The physical realization of the above-discussed balanced particle system (see subsection

5.3) is represented by an ensemble of many identical particles located along a curve

(typically a semi-line, line, or circle) subjected to stochastic noise of various intensity.

The noise level in this system is controlled by the so-called stochastic resistivity

coefficient β. The zero value of β implies an absolute noise level in the ensemble,
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which therefore corresponds to the Poissonian system where purely random locations of

particles generate the exponentially distributed inter-particle headways, whose steady-

state headway distribution reads

g(x) = Θ(x)λe−λx.

Here E(X) = 1/λ. Conversely, if the resistivity β is increasing above all limits the system

corresponds in fact to a deterministic system, whose inner dynamics is not burdened

with any stochastic fluctuations. Under this condition it holds g(x) = δ(x − ν), which

means that particles are located equidistantly in locations x0, x0+ν, x0+2ν, x0+3ν, . . . .

Here δ(x) stands for the Dirac delta.

Arrangement of particles in the two border variants does not depend in any way

on interactions between individual particles. However, the situation will dramatically

change for intermediate values 0 < β < +∞. Then the stationary state of the system

will be strongly dependent not only on the value of resistivity, but especially on

interaction forces that determine mutual interactions between neighboring particles in

the system. In a homogeneous variant of the system, when all neighboring particles are

repulsed/atracted via the same force description (force F (x) and interaction potential

ϕ(x)), where F (x) = −ϕ′(x), the associate steady-state of the system is described (see

general derivation in [7]) by the following inter-particle headway distribution:

g(x) = AΘ(x)e−βϕ(x)
e
−λx, (17)

where constants A = A(β) and λ = λ(β) ensure the proper normalization and scaling.

In addition, from this general derivation and from the considerations presented at

the end of the section 6 one can assert that for creating a super-Poisson ensemble (having

compressibility greater than one) particle interaction must also include an attractive

component.

10.2. Vehicular bunching and super-Poissonian traffic states – two consequences of

overtaking

In this part of Appendix we aim to illustrate that an overtaking of vehicles may cause

vehicular bunching, which is responsible for creation of super-Poissonian states in traffic

microstructure. Moreover, we try to show that inclusion of main-lane vehicles in a gap

between fast-lane vehicles acts effectively as a kind of a attractive force present in fast-

lane traffic stream. Our considerations are based on the idea that overtaking maneuver

brings a significant local instability into the steady-state arrangement of vehicles in the

fast lane, which finally causes the resulting atypical arrangement of vehicular positions,

previously referred to as super-Poisson. To support our assumption, we have constructed

the following simulator based on the above-discussed stochastic gas and simulated by

the modified Metropolis algorithm [11] having the following attributes: force-potential

ϕ(x), stochastic resistivity β, critical gap γ, and acceptance ratio q (see explanation

below).
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For the afore-mentioned purposes we use the following well-known findings. Firstly,

overtaking maneuvers are frequent only at lower traffic densities, when one can find

more fast-lane gaps suitable for inclusion of a main-lane vehicle. Therefore, we will

consider a low value of stochastic resistivity β in our model, which corresponds (as can

be clearly seen in figure 9) to traffic systems with lower density, that admits higher

statistical fluctuations. Secondly, as proven by many researches [18, 11, 7, 8, 6, 30] one

of the most suitable potentials utilized for vehicular headway modeling is the hyperbolic

potential ϕ(x) = 1/x. Indeed, this choice leads (after applying formula (17)) to the GIG-

distributed headways, which is in an excellent compliance with empirical microstructure

of traffic [7, 8, 11, 18]. Thirdly, an overtaking maneuver can be realized only if there

is a gap between fast-lane vehicles greater than a certain critical value (critical gap γ).

However, a sufficiently large gap can sometimes remain unused, but sometimes it can

be utilized to absorb an overtaking vehicle. If the latter occurs, the long gap is divided

into two randomly-long parts. It means that the maneuver will take place only with a

certain probability q (acceptance ratio).

The basic concept of the model is as follows. Particles randomly-moving on a

abscissa (respecting an original order and fulfilling periodic boundary-conditions) are

mutually repulsed through the potential ϕ(x) and randomized by a noise with intensity

driven by β. After reaching a steady state, inter-particle headways greater than critical

gap γ are ready for possible overtaking procedure. With probability q such a headway

is randomly divided into two segments. Otherwise, i.e. with probability 1 − q, the

headway remains unchanged. Thereafter, the resulting set of headways obtained from

the simulation (and scaled to the unit average) is then subjected to standard statistical

analysis.

Outputs of the analysis show that for appropriately-chosen parameters, when q ≫ 0,

(see caption below figure 11) one can acquire headway-sets having features typical for

super-Poissonian ensembles. Indeed, as visible in figure 11, variance of numerical data

visualized (crosses) is significantly greater than one, which indicates a super-Poisson

state of bunched particles. In addition, probability density GIG (16) – obtained

by statistical estimations based on MLE approaches – fits the numerical data quite

convincingly. It means that the same distribution of inter-particle headways (as that

detected in simulated data) can be gained from a steady state of the particle gas with

a potential combining repulsive and attractive stimuli. To be specific, optimal GIG-

estimation (16) of numerical data visualized by crosses in figure 11, where α̂ = 1.1489,

β̂ = 0.2018, λ̂ = 0.2906, represents a steady-state distribution of a gas with resistivity

β̂ and potential

ϕ(x) =
α̂

β̂
ln(x) +

1

x
.

It means that traffic microstructure resulting from overtaking is identical with the

microstructure, which is formed in a gas with a potential containing, in addition to

a repulsive stimulus, also an attractive component.



Super-random states in vehicular traffic – detection & explanation 24

0 1 2 3 4 5

Scaled Inter-Particle Gap

0

0.2

0.4

0.6

0.8

1

1.2

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Steady-state gaps (q=0)

Theoretical prediction

Out-of-steady-state gaps (q=1/10)

GIG estimation

Figure 11. Distributions of scaled gaps in the numerical model. We visualize two

simulation outputs for the following parameters. Gray bars: β = 1/10, γ = 1/3,

q = 0. Blue crosses: β = 1/10, γ = 1/3, q = 1/10. Green curve shows the

analytically-derived prediction (17), which is valid for system without overtaking.

Purple curve has been acquired by Maximum Likelihood Estimation assuming

that synthetical gaps are GIG-distributed. Compressibility of steady-state data is

χ = 0.8261 (sub-Poissonian state), whereas compressibility of perturbed data is

χ = 1.0561 (super-Poissonian state).

10.3. Cross-validation and statistical reliability

In order to demonstrate the consistency and statistical reliability of the results presented

we test here whether super-Poisson states are present also in other vehicle-by-vehicle

data and also in smaller subsets of the main data file used in this paper. To be specific,

we apply the procedure estimating a sample compressibility χ repeatedly for four disjoint

subsets taken from different segments of highway circuit R1 Prague, Czech Republic.

Above that we make similar estimations for four disjoint data-files measured on the

Dutch two-lane freeway A9. The results of the estimations are plotted in figures 12,

13. In all cases the compressibility of lower-density traffic states measured in a fast lane

exceeds (in contrast to main-lane data) the limit defined by the pure Poisson states.

Essentially the same behavior is detected also in [33], where the similar procedures have

been applied to public traffic data.

10.4. Super-random states in urban traffic

In the last part of the text, we would like to show that super-random traffic conditions

can also be found in traffic situations where speed of vehicles is significantly reduced
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Figure 12. Compressibility of empirical vehicular data (Czech Republic). We plot

estimated values χ for 4 separate independent subsets of the data-file analyzed in

this paper. In regions with insufficient amount of data, i.e. typically for very-

low density regions or for density above ≈ 60 veh/km, the compressibility is not

ascertained.

by traffic signs. Such a situation typically occurs within urban agglomerations, where

relevant regulations prohibit crossing a certain speed limit (in the Czech Republic it is

50 kilometers per hour). However, more sporty drivers usually utilize the fast lane to

overtake main-lane vehicles that respect the speed limit. In this way, the super-random

states are generated in urban traffic patterns as well. This is very clearly seen in figure

14 that demonstrates the results of respective statistical analysis. A curve of statistical

rigidity has been extracted from about 500,000 vehicle passages detected by technology

of video object detection. The linear part of the statistical rigidity has been subsequently

subjected to a standard linear regression. This method has been applied to determine

the empirical value of statistical compressibility, whose dependence on traffic density is

plotted in the figure.

The result convincingly shows the presence of super-random states in almost all

density zones of the fast lane. In contrast, all main-lane traffic states are strictly sub-

Poissonian, which exactly replicates the situation found for expressway traffic.
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Figure 13. Compressibility of empirical vehicular data (Netherlands). We plot

estimated values χ for four disjoint data-files measured on the Dutch two-lane

freeway A9. In regions with insufficient amount of data, i.e. typically for very-low

density regions or for density above ≈ 50 veh/km in a fast lane or ≈ 25 veh/km in

a main lane, the compressibility is not ascertained.

10.5. Variable list and explanation

For comfort and better understanding, in the following table we summarize variables

used in this paper and explain their meaning.
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Figure 14. Estimated compressibility for urban traffic. We plot values of the

statistical compressibility, which have been obtained by linear regression applied

to a course of the empirical statistical rigidity. This has been extracted from

urban traffic data measured in several Czech cities. Data from both lanes have

been analyzed separately.



Super-random states in vehicular traffic – detection & explanation 28

Table 1. List of variables.

Technical term Symbol Explanation

index k index of a vehicle

instant time τ

spatial location ξ

expected value and variance E(X ), VAR(X ) descriptive characteristics of variable X

ith statistical moment µi µ0 = 1, µ1 = E(X ), and µ2 = VAR(X ) + µ2
1

stochastic resistivity β parameter in stochastic particle gas

sampling size K we use K = 50 in the paper

incoming time τ
(in)
k

instant when a front bumper reached a detector

outgoing time τ
(out)
k

instant when a front bumper reached a detector

velocity vk velocity of the kth car

vehicle length ℓk length of the kth car

incoming time container T (in) collects time instants τ
(in)
k

outgoing time container T (out) collects time instants τ
(out)
k

velocity container Υ collects velocities of cars

length container Λ collects vehicle lengths

vehicle position 1 ξ
(front)
k

location of a front bumper

vehicle position 2 ξ
(front)
k

location of a rear bumper

segment (segmentation zone) Ψ small sub-area v ID plane

first fundamental relation ΩID all existing intensity-density pairs

second fundamental relation ΩVD all existing velocity-density pairs

time headway z time between two cars as they pass a detector

time clearance t time gap between two successive vehicles

distance headway s space between two front bumpers in a fixed time

distance clearance r space gap between two successive vehicles

scaled time clearance y time clearance after the unification procedure

scaled distance clearance x space clearance after the unification procedure

index set Gi all indices respective to the ith sample

sample of time headways (ith) Zi set of time headways in one sample

sample of time clearances Ti set of time clearances in one sample

sample of space headways Si set of space headways in one sample

sample of space clearances Ri set of space gaps in one sample

sample of velocities Υi set of velocities related to a sample

sample of scaled time clearances Yi set of scaled time clearances in one sample

sample of scaled space gaps Xi set of scaled space gaps in one sample

sample means 〈Ti〉, 〈Si〉, . . .

segmented index set FΨ sample indices belonging to Ψ

segmented time clearances YΨ set of unified time clearances belonging to Ψ

segmented space clearances XΨ set of unified space gaps belonging to Ψ

segmented velocities ΥΨ set of velocities belonging to Ψ

force F (s) force depending on headway

force potential ϕ(s) force potential depending on headway

headways and multiheadways Rk and Xk inter-particle headways and multiheadways

statistical rigidity ∆(L) parameterized variance for the interval frequency

statistical compressibility χ a slope of linear asymptote for statistical rigidity


