
Insert here your thesis’ task.

Master’s thesis

Framework for Extraction of Wikipedia
Articles Content

Oleksandr Husiev

Department of theoretical computer science
Supervisor: Ing. Milan Dojčinovski, Ph. D.

February 17, 2022

Acknowledgements

I would like to thank my supervisor Milan Dojčinovski, family and friends for
their prolonged support during writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on February 17, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Oleksandr Husiev. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Husiev, Oleksandr. Framework for Extraction of Wikipedia Articles Content.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Tato diplomová práce se zabývá extrakcí obsahu Wikipedie pro DBpedia -
crowd-sourced projekt. Hlavním cílem této práce bylo vyvinout rámec pro
extrakci obsahu, struktury a anotací článků z Wikipedie. Výsledkem je fra-
mework, který zpracovává velké skládky XML na Wikipedii v několika popu-
lárních jazycích s možností dynamicky přidávat nové jazyky a vytváří čistý
textový výstup, odkazy a strukturu stránky ve formátu N-Triples.

Klíčová slova NIF, RDF, propojená data, web škrábání.

Abstract

This thesis describes the development process of the extraction of Wikipedia
articles content for a DBpedia, a crowd-sourced community effort. The main
goal of this thesis was to develop a framework for extraction of Wikipedia
articles content, structure, and annotations. The result is a framework that
processes large Wikipedia XML dumps in several popular languages, with the
possibility to dynamically add new languages, and produces clean text output,
links, and page structure in N-Triples format.

vii

Keywords NIF, RDF, linked data, web scraping, knowledge graph.

viii

Contents

Introduction 1
Motivation . 1
Objectives . 1
Challenges . 2

1 Background and related works 3
1.1 The Concept of Semantic Web 3
1.2 What is Linked Data? . 4

1.2.1 RDF Description . 4
1.3 NLP Interchange Format . 7

1.3.1 Existing Use Cases for NIF 9
1.4 Linked Open Data and DBpedia 10

1.4.1 Extracting Structured Information from Wikipedia . . . 11
1.4.2 DBpedia Dataset . 12
1.4.3 Triplestore . 12
1.4.4 DBpedia Dataset Web Endpoints 13

1.5 Related works . 13
1.5.1 DBpedia Information Extraction Framework 13

2 Analysis and Implementation 15
2.1 Requirements . 15

2.1.1 Desired Output . 16
2.1.1.1 Context . 16
2.1.1.2 Links . 17
2.1.1.3 Page Structure 18

2.2 Design . 19
2.3 General Workflow . 19
2.4 Usability considerations . 20

2.4.1 REST API . 20

ix

2.4.1.1 REST API Endpoints 21
2.4.2 Command Line Interface 21
2.4.3 Command Line Input Options 22

2.5 Project Architecture . 22
2.6 Implementation . 24

2.6.1 Tools and libraries . 24
2.6.2 Spring Framework . 25
2.6.3 Java Jackson XML Library 25
2.6.4 Article Parsing . 26
2.6.5 NIF Formatting . 27
2.6.6 Output generation . 28
2.6.7 Dynamic Language Support 28

3 Testing and Results 31
3.1 Smoke Testing . 33
3.2 Unit Test coverage . 34

3.2.1 JUnit Framework . 36
3.3 Integration Testing . 37
3.4 End-to-End Testing . 42

3.4.1 SHACL Shape Validation 42
3.4.2 English language parsing 43
3.4.3 Testing other languages 45
3.4.4 Output format validation 45
3.4.5 Scale Testing . 47

4 Conclusions 49
4.1 Future improvements . 50

5 Acronyms 51

Bibliography 53

x

List of Figures

1.1 Basic RDF Graph[1] . 5

2.1 General Extraction Framework data workflow 19
2.2 Framework Main Class Diagram 24

xi

Introduction

Motivation
Knowledge bases are growing up in importance as a Web and enterprise search
engine. At the moment, knowledge bases cover only specific niches and are
not useful outside of their primary purpose. As part of a broader DBpe-
dia initiative, this thesis has an objective to structure information, store it
in a machine-readable form, and provide better ways for information to be
collected, organized, searched, and utilized.

A DBpedia is a knowledge base, which information is organized as an open
knowledge graph. DBpedia data is served as Linked Data, which opens a new
way to access the Web for applications: via browser, automated crawlers, or
complex SQL-like queries. For example, current technologies do not allow
to combine information about cities, criminal rates, climate, and open job
postings into one search. The goal of DBpedia is to enable such queries to
happen.

The creation of the Framework for Extraction of Wikipedia Articles Con-
tent is important as it will allow the DBpedia initiative to receive formatted
article data from the Wikipedia on a regular basis.

Objectives
The main sight of the thesis is to extract structured content from Wikipedia
articles. This content can be divided into several main parts: context, struc-
ture, and links. Context is the text itself. The structure is how the article is
organized and split into sections, subsections and paragraphs, and links are
either links to other Wikipedia articles or external websites. Additionally, it
is essential to take care of article publication dates, clean up the non-standard
articles and sections, and cover other Wikipedia languages.

1. Accept and process input data in the form of Wikipedia XML dumps

1

Introduction

2. Extract context.

3. Extract page structure.

4. Extract links.

5. Provide outputs for context, links and page structure in the form of
N-Triples.

6. Implement language extensibility.

7. Provide a user interface.

Challenges
The main problem, however, is the current size of Wikipedia. Only a full En-
glish Wikipedia dump containing only text and XML structures takes around
16 GB of space. Therefore, a thesis should research the design and implemen-
tation of not only functional but an efficient parser with both horizontal and
vertical scalability in mind.

An additional challenge lies in the structure of a general wiki page. Not
all pages and their components are structured in the same way. For example,
some of the pages might have a line break in the middle of a citation link,
that can be ambiguously interpreted as a new paragraph start. This can
cause unexpected errors and exceptions during the parsing, and the goal of
the project is also to minimize and gracefully handle such exceptions.

2

Chapter 1
Background and related works

1.1 The Concept of Semantic Web
The Semantic Web is a Web of Data, an extension to the Web that links
the related data. The collection of Semantic Web technologies (such as Re-
source Description Framework (RDF), Web Ontology Language (OWL), Sim-
ple Knowledge Organization System (SKOS), SPARQL Protocol and RDF
Query Language) (SPARQL), etc.) provides an environment where applica-
tion can query that data, draw inferences using vocabularies, etc. The goal of
the Semantic Web is to develop languages to express current Internet data in
a machine processable way. This is achieved by making Internet data inter-
operable by allowing every machine to exchange data that has unambiguous
meaning defined in centralized reference resources, such as DBPedia.”Semantic
Web” is a term that Tim Berners-Lee has initially coined[2] for a web of data
where not simply text, but also meaning, or logical connections that machines
can process. The Semantic Web is an extension of the current World Wide
Web, defined by standards set by the World Wide Web Consortium (W3C).

Although Semantic Web is a term that has often been criticized as con-
fusing, opaque, and academic, it does nonetheless capture two of the most
critical aspects of these technologies:

• Semantic: The meaning of the data is not only explicitly represented
and richly expressive, but it also “travels” along with the data itself;

• Web: Individual pieces of data are linked together into a network of
information, just as documents are linked together on the World Wide
Web.

Less familiar synonyms to the Semantic Web are the following: Linked
Data Web, the Web of Data, Web 3.0, the Enterprise Information Web, or the
Giant Global Graph.

3

1. Background and related works

1.2 What is Linked Data?
In order to make Semantic Web, or Web of Data, a reality, it is necessary to
support a vast amount of data that are manageable and reachable by a variety
of Semantic Web tools. Not only access to data but also relationships among
data should be provided. This collection of interconnected datasets can also
be referred to as Linked Data.

The term was introduced in 2006 by Tim Berners-Lee’s four rules for pub-
lishing data on the Web[3], stating the following expectations for HyperText
Markup Language (HTML) or RDF standards:

1. Use Uniform Resource Identifier (URI) as an identifier.

2. Use Hypertext Transfer Protocol (HTTP) URIs so that people can look
up those names.

3. When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

4. Include links to other URIs. so that they can discover more things.

While these four rules are the basis of Linked Data and related develop-
ments, their exact implementation can be done differently and evolves over
time. Specifically, the way URI is now serialized either in RDF/Extensible
Markup Language (XML) or via N3(also known as Turtle, or N-triples).

1.2.1 RDF Description
The Resource Definition Framework(RDF) is a general-purpose language for
representing information in the Web[4].The RDF data model is similar to
classical conceptual modeling approaches, such as entity-relationship or class
diagrams. It is based on the idea of making statements about the resource in
expressions of the form subject–predicate–object, also known as triples. The
subject denotes the resource, and the predicate denotes traits or aspects of the
resource, and expresses a relationship between the subject and the object[1].

The underlying structure of any expression in RDF is a collection of triples,
each consisting of a subject, a predicate and an object. A set of such triples
is called an RDF graph. Each triple represents a statement of a relationship
between the things denoted by the nodes that it links. Each triple has three
parts - subject, predicate and object[5]. Subject and object are graph nodes,
while a predicate defines a relation between them, pointing from subject to an
object. On 1.1, for a triple <http://www.w3.org/TR/rdf-syntax-grammar>
is a subject, <http://purl.org/de/elements/1.1/title> is a predicate and ”RD-
F/XML Syntax Specification (Revised)” is an object.

To define what a subject is, we need to define an RDF URI Reference.
RDF URI Reference - is a Unicode string that:

4

1.2. What is Linked Data?

Figure 1.1: Basic RDF Graph[1]

• does not contain any control characters (#x00 - #x1F, #x7F-#x9F)

• and would produce a valid URI character sequence (per RFC2396[6], sec-
tions 2.1) representing an absolute URI with optional fragment identifier
when subjected to the encoding described below.

Blank node is a special case for RDF graph nodes that do not have a
URI Reference, usually represented as ”_”. Those blank nodes represent all
nodes for which graph only has partial information in a form of this node’s
objects.

Literal is a node that is used to identify values such as numbers, strings
or dates by means of a lexical representation. Literal can be either plain or
typed. For plain literals, they represented by a text and an optional language
tag. For typed literals, they are represented by a string and a type tag, for
example in <xsd:boolean, ”false”> xsd:boolean is a type and ”false” is a string
of a type boolean.

Subject can be either an RDF URI Reference or a blank node. Predicate
is an RDF URI Reference. Object can be an RDF URI Reference, Literal or
a blank node.

In applications of RDF such as RDF Site Summary (RSS) resources are
represented by URIs that denote and are used to link actual data on the World
Wide Web[5]. RDF in general can be used not only for Internet resources, but
for other knowledge ontologies too.

An RDF database, also called triplestore contains triples of interrelated
statements that can be visualized with a network graph. A traditional re-
lational database might split attributes about artworks and features about
artists into separate tables. In an RDF/graph database, all these data points
belong to the same interconnected graph, allowing users maximum flexibility
in deciding how they wish to query it.

RDF graphs can also be represented in many text serialization formats.
In a sentence ”Mona Lisa was painted by Leonardo da Vinci” the subject is

5

1. Background and related works

”Mona Lisa”, the object is ”Leonardo da Vinci” , and a predicate that defines
a relation between the subject and the object is ”paintedBy”, as seen in the
listing 1.1 .

Listing 1.1: Example of an RDF statement
<https://dbpedia.org/page/Mona_Lisa> <http://purl.org/dc/terms/

title> "Mona Lisa" .

<https://dbpedia.org/ontology/author> <http://www.w3.org
/1999/02/22-rdf-syntax-ns#label> "was created by" .

<https://dbpedia.org/page/Leonardo_da_Vinci> <http://xmlns.com/
foaf/0.1/name> "Leonardo da Vinci" .

The particular encoding for resources or triples varies from format to for-
mat. A non-exhaustive list of popular RDF serialization formats includes:

• Turtle - a compact human-friendly format.

• N3 - format that is similar to Turtle, but allows for additional features
like inference, or transformation rules.

• N-Triples - a very simple, easy-to-parse, line-based format that is not
as compact as Turtle.

• N-Quads - a superset of N-Triples for serializing multiple RDF graphs.

• RDF/XML - an XML-based syntax that was the first standard format
for serializing RDF.

• RDF/JSON - an alternative syntax for expressing RDF triples using
a simple JSON notation.

• JSON-LD - a JSON-based serialization, allows data to be serialized in
a way that is similar to traditional JSON.

For example, it is required to write an RDF file, say <http://example.org/smith>,
local identifiers, say #albert, #brian and #carol. This RDF file will look dif-
ferently in XML(1.2), Turtle format(1.3). It can be observed that Turtle
format is more concise than the XML one.

Listing 1.2: Example of RDF serialization in XML
<rdf:Description about="#albert"

<fam:child rdf:Resource="#brian">
<fam:child rdf:Resource="#carol">

</rdf:Description>

6

1.3. NLP Interchange Format

Listing 1.3: Example of RDF serialization in N3/Turtle
<#albert> fam:child <#brian>, <#carol>.

The World Wide Web (WWW) architecture now gives a global identi-
fier ”http://example.org/smith#albert” to Albert. Anyone can now use this
global identifier to refer to and provide more information about Albert.

In addition to describing a link, it is essential to know when to make a
link. One important pattern is a set of data which you can explore as you
go link by link by fetching data. Whenever one looks up the URI for a node
in the RDF graph, the server returns information about the arcs out of that
node, and the arcs in. In other words, it returns any RDF statements in which
the term appears as either subject or object.

Formally, call a graph G browsable if, for the URI of any node in G, if I
look up that URI I will be returned information which describes the node,
where describing a node means:

1. Returning all statements where the node is a subject or object; and

2. Describing all blank nodes attached to the node by one arc.

There are also the next limitations on such browseable data, mainly regard-
ing data consistency across separate documents. By these definitions, state-
ments which relate things in two different documents must be repeated. This
clearly goes against the knowledge principle Don’t Repeat Yourself (DRY), or
in this case, not to store data in other places, as the problems with keeping
the data consistent will arise eventually. A set of completely browsable data
with links in both directions has to be completely consistent, and that takes
coordination, especially if different authors or programs are involved.

One of the solutions to this repetition problem is to have links of a certain
property in a separate document. A person’s homepage doesn’t list all their
publications but instead puts a link to it a separate document listing them.

In conclusion, linked data is essential for linking the Semantic Web. It is
quite easy to implement linked data in both new and already existing appli-
cations or websites. Various common-sense considerations determine when to
make a link and when not to.

1.3 NLP Interchange Format
Natural Language Processing (NLP) is a field of science that combines lingus-
tics, computer science and artificial intelligence concerned with the interac-
tions between computers and human language, in particular how to program
computers to process and analyze large amounts of natural language data.

The NLP Interchange Format (NIF) is an RDF/OWL-based format that
aims to achieve between NLP tools, language resources and annotations[7].

7

1. Background and related works

NIF consists of specifications, ontologies and software that are combined under
the version identifier ”NIF 2.0”, but are also versioned separately. The initial
specification of NIF was released in November 2011.

NIF is being developed as a result and to facilitate the needs of Linked Data
and related tools. NIF addresses the interoperability problem on three layers:
the structural, conceptual and access layer. NIF is based on a Linked Data en-
abled URI scheme for identifying elements in (hyper-)texts that are described
by the NIF Core Ontology (structural layer) and a selection of ontologies for
describing common NLP terms and concepts (conceptual layer). NIF-aware
applications will produce output adhering to the NIF Core Ontology as REST
services (access layer). NIF enables the creation of heterogeneous, distributed
and loosely coupled NLP applications, which use the Web as an integration
platform. Another benefit is that a NIF wrapper has to be only created once
for a particular tool, but enables the tool to interoperate with a potentially
large number of other tools without additional adaptations. Ultimately, we
envision an ecosystem of NLP tools and services to emerge using NIF for
exchanging and integrating rich annotations.

NIF consists of several core components that are described below.

URI Schemes The idea behind NIF is to allow NLP tools to exchange
annotations about text in RDF. Hence, the main prerequisite is that text
becomes referenceable by URIs, so that they can be used as resources in
RDF statements[8][9]. In NIF, there is a distinction between the document
d, the text t contained in the document and possible substrings st of this
text. We call an algorithm to systematically create identifiers for t and
st a URI Scheme. The canonical URI scheme of NIF is based on RFC
5147[10], which standardizes fragment ids for the text/plain media type. Ac-
cording to RFC 5147, the following URI can address the first occurrence of
the substring “Semantic Web” in the text (26610 characters) of the document
http://www.w3.org/DesignIssues/LinkedData.html with the separator #:
http://www.w3.org/DesignIssues/LinkedData.html#char=717,729.

NIF Core Ontology The NIF Core Ontology[11] provides classes and prop-
erties to describe the relations between substrings, text, documents and their
URI schemes. The main class in the ontology is nif:String, which is the class
of all words over the alphabet of Unicode characters (sometimes called Σ∗).
We built NIF upon the Unicode Normalization Form C, as this follows the rec-
ommendation of the RDF standard for rdf:Literal. Indices are to be counted
in code units. Each URI scheme is a subclass of nif:String and puts fur-
ther restrictions over the syntax of the URIs. For example, instances of type
nif:RFC5147String have to adhere to the NIF URI scheme based on RFC 5147.
Users of NIF can create their own URI schemes by subclassing nif:String and
providing documentation on the Web in the rdfs:comment field.

8

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html#char=717,729

1.3. NLP Interchange Format

Framework for Extraction of Wikipedia Articles Content generates a re-
source of the nif:Context OWL class. This class is assigned to the whole
string of the text (i.e. all characters). The purpose of an individual of this
class is special, because the string of this individual is used to calculate the
indices for all substrings. Therefore, all substrings have to have a relation
nif:referenceContext pointing to an instance of nif:Context.

1.3.1 Existing Use Cases for NIF
Internationalization Tag Set The Internationalization Tag Set (ITS) Ver-
sion 2.0 is a W3C working draft, which is in the final phase of becoming a
W3C recommendation. Among other things, ITS standardizes HTML and
XML attributes which can be leveraged by the localization industry (espe-
cially language service providers) to annotate HTML and XML nodes with
processing information for their data value chain.

An example of three attributes in an HTML document is given here1.4:

Listing 1.4: Example of Internationalization Tag Set HTML Code
<html>

<body>
<h2 translate="yes">

Welcome to <span its-ta-ident-ref="http://dbpedia.
org/resource/Dublin" its-within- text="yes"
translate ="no"> Dublin in <b
translate ="no" its-within-text="yes"> Ireland
!

</h2>
</body>

</html>

NIF successfully creates a bridge between ITS and RDF and a round-
trip conversion was recently implemented as a proof-of-concept. Therefore,
NIF can be expected to receive a wide adoption by machine translation and
industrial language service providers. Additionally, the ITS Ontology provides
well modeled and accepted properties, which can in turn be used to provide
best practices for NLP annotations.

Ontologies of Linguistic Annotation The Ontologies of Linguistic An-
notation (OLiA) provide stable identifiers for morpho-syntactical annotation
tag sets, so that NLP applications can use these identifiers as an interface for
interoperability. OLiA provides Annotation Models (AMs) for fine-grained
identifiers of NLP tag sets. The individuals of these annotation models are
then linked via rdf:type to coarse-grained classes from a Reference Model
(RM), which provides the interface for applications. NIF provides two prop-
erties: nif:oliaLink links a nif:String to an OLiA Annotation Model. Although

9

1. Background and related works

a reasoner could automatically deduce the abstract type of each OLiA individ-
ual from the RM, it was a requirement that the coarse-grained types should
be linked redundantly to the strings as well in case reasoning services are not
available or would cause high overhead. Therefore, an OWL annotation prop-
erty nif:oliaCategory was created as illustrated in the following example[?].

Listing 1.5: Example of Internationalization Tag Set HTML Code
<char=342,345> a nif:String, nif:RFC5147String;
nif:oliaLink penn:NNP;
nif:oliaCategory olia:Noun, olia:ProperNoun .
deducable by a reasoner :
penn:NNP a olia:Noun, olia:ProperNoun .

1.4 Linked Open Data and DBpedia
A typical example of a large Linked Dataset is DBpedia. DBpedia and re-
lated tools are supported by the Leipzig University research group. As stated
in the related article, is a community effort to extract structured information
from Wikipedia and to make this information available on the Web. DBpe-
dia allows internet users to ask sophisticated queries against datasets derived
from Wikipedia and to link other datasets on the Web to Wikipedia data.
This section will describe the extraction of the DBpedia datasets, and how
the resulting information is published on the Web for human and machine
consumption[12].

The most effective way of spurring synergistic research along these direc-
tions is to provide a rich corpus of diverse data. This would enable researchers
to develop, compare, and evaluate different extraction, reasoning, and uncer-
tainty management techniques, and to deploy operational systems on the Web.
The DBpedia project has derived such a data corpus from the Wikipedia en-
cyclopedia.

Wikipedia editions are available in over 250 languages, with the English
one accounting for more than 1.95 million articles. Like many other web appli-
cations, Wikipedia has the problem that its search capabilities are limited to
full-text search, which only allows very limited access to this valuable knowl-
edge base. As has been highly publicized, Wikipedia also exhibits many of
the challenging properties of collaboratively edited data: it has contradictory
data, inconsistent taxonomical conventions, errors, and even spam.

The DBpedia project focuses on the task of converting Wikipedia content
into structured knowledge, such that Semantic Web techniques can be em-
ployed against it — asking sophisticated queries against Wikipedia, linking it
to other datasets on the Web, or creating new applications or mashups.

The DBpedia project focuses on the task of converting Wikipedia content
into structured knowledge, such that Semantic Web techniques can be em-

10

1.4. Linked Open Data and DBpedia

ployed against it — asking sophisticated queries against Wikipedia, linking
it to other datasets on the Web, or creating new applications or mashups.
DBpedia project makes the following contributions:

• Develop an information extraction framework, which converts Wikipedia
content to RDF. The basic components form a foundation upon which
further research into information extraction, clustering, uncertainty man-
agement, and query processing may be conducted.

• Provide Wikipedia content as a large, multi-domain RDF dataset, which
can be used in a variety of Semantic Web applications. The DBpedia
dataset consists of 103 million RDF triples.

• Iinterlink the DBpedia dataset with other open datasets. This results in
a large Web of data containing altogether around 2 billion RDF triples.

• Develop a series of interfaces and access modules, such that the dataset
can be accessed via Web services and linked to other sites.

1.4.1 Extracting Structured Information from Wikipedia
Wikipedia articles contain different types of structured information, such as in-
fobox templates, categorisation information, images, geo-coordinates, links to
external Web pages and links across different language editions of Wikipedia.
To process this, Wikipedia uses Mediawik software. Due to the nature of this
Wiki system, basically all editing, linking, annotating with meta-data is done
inside article texts by adding special syntactic constructs. Hence, structured
information can be obtained by parsing article texts for these syntactic con-
structs. Example of Wikipedia XML and then cleaned text that will be shown
to the user can be seen in listings 1.6 and 1.7 respectively.

Listing 1.6: Raw Wikipedia XML
{{basic forms of government}}
'''Anarchism''' is an [[Anti-authoritarianism|anti-authoritarian

]] [[Political philosophy|political]] and [[Social
philosophy|social philosophy]]{{sfnm|1a1=McLaughlin|1y
=2007|1p=59|2a1=Flint|2y=2009|2p=27}} that rejects [[
Hierarchy|hierarchies]] deemed unjust and advocates their
replacement with [[Workers' self-management|self-managed]],
[[Self-governance|self-governed]] societies based on
voluntary, [[cooperative]] institutions. These institutions
are often described as [[Stateless society|stateless
societies]],{{sfnm|1a1=Sheehan|1y=2003|1p=85|2a1=Craig|2y
=2005|2p=14}} ...

11

1. Background and related works

Listing 1.7: Cleaned Wikipedia text

Anarchism is an anti-authoritarian political and social
philosophy that rejects hierarchies deemed unjust and
advocates their replacement with self-managed, self-governed
societies based on voluntary, cooperative institutions.

These institutions are often described as stateless
societies, ...

The XML extraction algorithm detects such Mediawiki templates and rec-
ognizes their structure using pattern matching techniques. It selects signifi-
cant templates, which are then parsed and transformed to RDF triples. The
algorithm uses post-processing techniques to increase the quality of the ex-
traction. MediaWiki links are recognized and transformed to suitable URIs,
common units are detected and transformed to data types. Furthermore, the
algorithm can detect lists of objects, which are transformed to RDF lists.

1.4.2 DBpedia Dataset

As stated on the DBpedia’s official website[13], the English version of the
DBpedia dataset currently provides information about more than 4.58 million
things, out of which 4.22 million are classified in a consistent ontology, in-
cluding at least 1,445,000 persons, 735,000 places(including 478.000 populated
places), 411,000 creative works (including 123,000 music albums, 87,000 films
and 19,000 video games), 241,000 organizations (including 58,000 companies
and 49,000 educational institutions), 251,000 species and 6,000 diseases.

DBpedia concepts are described by short and long abstracts in 125 lan-
guages. All these versions together describe 38.3 million things, out of which
23.8 million are localized descriptions of things that also exist in the English
version of DBpedia. The full DBpedia data set features 38 million labels and
abstracts in 125 different languages, 25.2 million links to images and 29.8 mil-
lion links to external web pages; 80.9 million links to Wikipedia categories,
and 41.2 million links to YAGO categories. DBpedia is connected with other
Linked Datasets by around 50 million RDF links.

1.4.3 Triplestore

A triplestore is a software program capable of storing and indexing RDF data,
in order to enable querying this data efficiently. Most triplestores support the
SPARQL query language for querying RDF data. Virtuoso, Sesame, and
BigOWLIM are typical examples of triplestores. DBpedia is using Virtuoso
as the underlying triplestore.

12

1.5. Related works

1.4.4 DBpedia Dataset Web Endpoints

DBpedia website provides three access mechanisms to the DBpedia dataset:
Linked Data, the SPARQL protocol, and downloadable RDF dumps. Royalty-
free access to these interfaces is granted under the terms of the GNU Free
Documentation License[14].

Linked Data. DBpedia resource identifiers, are set up to return RDF
descriptions when accessed by Semantic Web agents, and a simple HTML
view of the same information to traditional web browsers. HTTP content
negotiation is used to deliver the appropriate format.

SPARQL Endpoint. Client applications can send queries over the SPARQL
protocol to this endpoint at http://dbpedia.org/sparql. This interface is ap-
propriate when the client application developer knows in advance exactly what
information is needed. In addition to standard SPARQL, the endpoint sup-
ports several extensions of the query language that have proved useful for
developing user interfaces: full text search over selected RDF predicates, and
aggregate functions, notably COUNT. To protect the service from overload,
limits on query cost and result size are in place. For example, a query that
asks for the store’s entire contents is rejected as too costly, and SELECT
results are truncated at 1000 rows.

RDF Dumps. N-Triple serializations of the datasets are available for down-
load at the DBpedia website and can be used by sites that are interested in
larger parts of the dataset.

1.5 Related works

1.5.1 DBpedia Information Extraction Framework

Prior to the current project, a few projects have already been made in or-
der to facilitate DBpedia’s need for extracting information from Wikipedia
and related resources, namely DBpedia Information Extraction Frame-
work[15].

DBpedia Information Extraction Framework focuses on the main disadvan-
tage of DBpedia: heavy-weight release process. Producing a DBpedia dataset
release through the traditional dump-based extraction requires manual effort
and – since dumps of the Wikipedia database are created on a monthly basis
– DBpedia has never reflected the current state of Wikipedia. Hence, this
project extended the DBpedia extraction framework to support a live extrac-
tion, which works on a continuous stream of updates from Wikipedia and
processes that stream on the fly. More importantly, the extraction frame-
work focuses on other parts of the Wikipeida articles. The framework has 19
extractors that process the following Wikipedia content, most important of
which are list below:

13

1. Background and related works

• Labels. All Wikipedia articles have a title, which is used as an rdfs:label
for the corresponding DBpedia resource.

• Abstracts. Those include a short abstract (first paragraph, represented
by using rdfs:comment) and a long abstract (text before a table of con-
tents, using the property dbpedia:abstract) from each article.

• Interlanguage links.

• Images.

• Redirects.

• Disambiguation.

• External links.

• Page links.

• Person data. It extracts personal information such as surname, and birth
date. This information is represented in predicates such as foaf:surname,
and dbpedia:birthDate.

• Infobox

• Category label Wikipedia articles are arranged in categories, and this
extractor extracts the labels for those categories.

14

Chapter 2
Analysis and Implementation

2.1 Requirements
Before starting to design the project, it is beneficial to specify the require-
ments. There several ways to layout the requirements, mainly writing down
formal requirements or use cases. Because the project is oriented on deliv-
ering results to a smaller group of developers, it will be better to use formal
requirements, as opposed to user-oriented use cases.

The list of functional requirements for the Framework for Extraction of
Wikipedia Articles Content:

1. Accept input data: The framework should accept the official Wikipedia
dumps in the XML format, provided by the Wikipedia. The dumps can
contain an amount of information up to 20 GB of text data. The frame-
work should be able to parse dumps in English and at least 4 other
popular Wikipedia languages.

2. Provide outputs: The framework should print all the outputs in the
N-Triples format, concatenating processed data from all articles in a
single XML input file and writing the data to .nt output file.

3. Extract context: The framework should extract clean text from the
Wikipedia page, removing or processing all the XML and Wikipedia-
specific markup, including the core text but excluding infoboxes, files,
images, and footers.

4. Extract page structure: The framework should extract a page tree,
where every page section is a node, preserving the relation to the page
context. The page tree should include The page tree should be printed
in an output file separately from the page context.

5. Extract links: In addition to context, the framework should supple-
ment the context by extracting internal Wikipedia links from the page.

15

2. Analysis and Implementation

These links should refer to their respective sections of the text, and in-
clude only other Wikipedia articles, excluding possible external links to
other web pages. The links should also be printed in another output file,
separately from the page structure and context.

6. Implement extensibility: The framework should be easily extensible
by other developers to include new languages.

7. Provide an interface: The framework is required to have an intuitive
interface for the user to easily leverage the framework in other works.

8. Evaluate the results: The framework should contain the metrics that
will provide user with a feedback about every execution.

While functional requirements are the most important part of the project,
there can be other, less specific requirements that go along with the func-
tional requirements, commonly known as non-functional requirements. For
this project, the non-functional requirements were next:

1. Research of Wikipedia XML Dump Structure and NIF data format.

2. Find ways to facilitate the goals of the DBpedia project.

2.1.1 Desired Output
The output that is required is defined below[16], split into context, links and
page structure.

2.1.1.1 Context

Context is a resource that includes the full text of a page with all the Wikipedia
formatting removed in a nif:isString property. This string serves as a context
for its substrings. The Unicode String given in the nif:isString property must
be used to calculate the begin and endIndex for all nif:Strings that have a
nif:referenceContext property to this URI[17].For the context resource, we
need next values:

• Predicate Language - predLang. The main language of the context.

• Context String - isString. The context’s text.

• Source URL - sourceUrl Link to the Wikipedia article.

• Context’s Index at the start - beginIndex Starting index of the
context - always starts at zero.

• Context’s Index at the end - endIndex The context’s length.

16

2.1. Requirements

Listing 2.1: Example of an output for context in NIF format
@prefix ns0: <http://persistence.uni-leipzig.org/nlp2rdf/

ontologies/nif-core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://dbpedia.org/resource/Anarchism?dbpv=2022-02&nif=context>
ns0:predLang <http://lexvo.org/id/iso639-3/eng> ;
ns0:sourceUrl <http://en.wikipedia.org/wiki/Anarchism> .

<http://dbpedia.org/resource/Anarchism?dbpv=2022-01&nif=context>
ns0:isString "Anarchism is an anti-authoritarian

political and social philosophy that rejects ..." ;
ns0:endIndex "43346"^^xsd:nonNegativeInteger ;
ns0:beginIndex "0"^^xsd:nonNegativeInteger ;
a ns0:Context .

2.1.1.2 Links

For the links resource, we need to pick all the internal, or Wikipedia links, as
well as external links that lead to other websites from Wikipedia. Note that
this does not include references, only links that are part of the text. Links can
be either of type Word, which is a single word, or Phrase, which is includes
several words that have the same link. Links should have next properties:

• Reference Context - referenceContext. The context resource to
where this link belongs.

• Identity Reference - taIdentRef. Resource’s identity reference in
DPpedia

• Super string - superString. Parent paragraph of the link.

• Anchor - anchorOf Link’s word or phrase in the text.

• Context’s Index at the start - beginIndex Starting index of the
link, as related to the context’s text.

• Context’s Index at the end - endIndex The link’s end index.

Listing 2.2: Example of an output for a Word link in NIF format
@prefix ns0: <http://persistence.uni-leipzig.org/nlp2rdf/

ontologies/nif-core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ns1: <http://www.w3.org/2005/11/its/rdf#> .

17

2. Analysis and Implementation

<http://dbpedia.org/resource/Anarchism?dbpv=2022-02&nif=
word_157_170>

a <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/
nif-core#Word> ;

ns0:referenceContext <http://dbpedia.org/resource/
Anarchism?dbpv=2022-02&nif=context> ;

ns0:beginIndex "157"^^xsd:nonNegativeInteger ;
ns0:endIndex "170"^^xsd:nonNegativeInteger ;
ns0:superString <http://dbpedia.org/resource/Anarchism?

dbpv=2022-02&nif=paragraph_0_550> ;
ns1:taIdentRef <http://dbpedia.org/resource/Self-

governance> ;
ns0:anchorOf "self-governed" .

2.1.1.3 Page Structure

Page structure describes the structure of the article, with sections and para-
graphs organize into a tree. Page structure has two types of resources, sections
that are separated by titles in the article, and paragraphs that are part of the
section.

• Reference Context - referenceContext. The context resource to
where the page structure belongs.

• Has Section - hasSection. Section’s children subsections.

• Has Paragraph - hasParagraph. Section’s paragraphs.

• First Paragraph - firstParagraph First paragraph of the section

• Last Paragraph - lastParagraph Last Paragraph of the section.

• Context’s Index at the start - beginIndex Starting index of the
section, as related to the context’s text.

• Context’s Index at the end - endIndex The section’s end index.

Listing 2.3: Example of an output for a Section

@prefix ns0: <http://persistence.uni-leipzig.org/nlp2rdf/
ontologies/nif-core#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

18

2.2. Design

Figure 2.1: General Extraction Framework data workflow

<http://dbpedia.org/resource/Anarchism?dbpv=2022-02&nif=
section_0_1231>

a <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/
nif-core#Section> ;

ns0:hasSection <http://dbpedia.org/resource/Anarchism?
dbpv=2022-02&nif=section_3745_3758>, <http://dbpedia.
org/resource/Anarchism?dbpv=2022-02&nif=
section_1231_3745>, <http://dbpedia.org/resource/
Anarchism?dbpv=2022-02&nif=section_43313_43346> ;

ns0:hasParagraph <http://dbpedia.org/resource/Anarchism?
dbpv=2022-02&nif=paragraph_550_1227>, <http://dbpedia
.org/resource/Anarchism?dbpv=2022-02&nif=
paragraph_0_550> ;

ns0:referenceContext <http://dbpedia.org/resource/
Anarchism?dbpv=2022-02&nif=context> ;

ns0:lastParagraph <http://dbpedia.org/resource/Anarchism?
dbpv=2022-02&nif=paragraph_550_1227> ;

ns0:endIndex "1231"^^xsd:nonNegativeInteger ;
ns0:firstParagraph <http://dbpedia.org/resource/Anarchism

?dbpv=2022-02&nif=paragraph_0_550> ;
ns0:beginIndex "0"^^xsd:nonNegativeInteger .

2.2 Design

2.3 General Workflow
The general data workflow of the Framework for Extraction of Wikipedia
Articles is depicted in Figure 2.1.

19

2. Analysis and Implementation

• Wikipedia: the main Wikipedia website is the primary sources of infor-
mation.

• Wikipedia XML dump: Wikipedia runs a daily database archivation
process and releases all the archived data in the form of XML dumps.
These dumps can then be downloaded, unpacked and fed to the frame-
work.

• Framework for Extraction of Wikipedia Articles: the framework pro-
cesses the XML dump to get the context, structure and links and provide
several options for the output.

• N-Triples Dumps: one of the outputs is to write the processed informa-
tion to text files as N-Triples

• REST API endpoints: the other option is to provide the REST API
endpoints for more convenient view of the output.

2.4 Usability considerations
One of the goals of the application is to make it easy to use, both by re-
searchers and machines. In order to achieve that, application provides several
interfaces. For the machines, it might be easier to connect to the application
via Representational state transfer (REST) Application Programming inter-
face (API). Humans prefer other interfaces, such as Graphic User Interface
(GUI), or Command Line Interface (CLI).

2.4.1 REST API
REST is a software architecture that defines a set of constraints to be used for
creating Web services. The Representational State Transfer (REST) style is
an abstraction of the architectural elements within a distributed hypermedia
system. REST ignores the details of component implementation and protocol
syntax in order to focus on the roles of components, the constraints upon
their interaction with other components, and their interpretation of significant
data elements. It encompasses the fundamental constraints upon components,
connectors, and data that define the basis of the Web architecture, and thus
the essence of its behavior as a network-based application[18]. Web services
that implement the REST architecture provide a way to communicate between
different internet actors.

An API is a client-server interface which defines a contract between clients
and servers.

In a RESTful Web service, requests made to a server’s API Endpoint will
elicit a response with a payload formatted in HTML, XML, JSON, or some
other format.

20

2.4. Usability considerations

The framework gives an option to use REST API endpoints over the CLI
interface. While REST API is a tool used for client-server communication,
DBPedia and this Framework also focus on application-based development,
where no server communication is needed and all the data and tools are already
downloaded and on the client side. This allows for an offline processing, as
compared to constant online communication that is required if the parsing
tool is only available as a server. WIth this in mind, we can conclude that
while REST API is useful for some particular tasks, it is better to use it as a
secondary interface for the Framework.

2.4.1.1 REST API Endpoints

In API terminology, communication endpoint, or simply endpoint is a unique
URL address that users can access to exchange information with the server.
Or in other words, APIs work using requests and responses. When an API
requests information from a web application or web server, it will receive a
response. The place that APIs send requests and where the resource lives, is
called an endpoint[19].

The framework provides the next REST endpoints:

• POST /articles - Submission endpoint allows you to submit the XML
dump or its part to the server. After that is done, the server will asyn-
chronously parse the provided XML, adding the articles to the database
as it goes through the submitted articles.

• GET /articles/{title}/context Get the context N-Triples of an ar-
ticle with a given title.

• GET /articles/{title}/structure Similarly, get the page structure of
an article.

• GET /articles/{title}/links Get the links associated with an article
with a given title.

• GET /articles/count Get the total count of articles in a server’s
database.

2.4.2 Command Line Interface
Parsing of large xml files imposes limitations on the technologies that can
be used. Particularly, the size of English part of the Wikipedia xml dump
has a size of 16 GB. This means that the file cannot be normally loaded into
Random Access Memory (RAM), as a single modern computer will usually
have from 4 to 16 GB of RAM, with Java heap utilizing a quarter of that
capability by default.

21

2. Analysis and Implementation

Furthermore, modern internet communication is better built around fre-
quent exchange with small packets, and imposes a limit of maximum amount
of requests that can be sent in a second. For example, it will not be possible
to use Wikipedia’s API for this task, as the Wikipedia’s server might ban all
further requests. For that reason, all the processing should be done offline and
not rely on the internet connection at all.

Considering the limitations described above, it was decided to use CLI as
the main way to use the application.

To simplify further development process, it was decided to use an existing
picocli library for simple CLI implementation, as it reduces the development
time by encapsulating most of the CLI-related code, allowing the developer
to control only the commands needed for CLI.

2.4.3 Command Line Input Options
The library used to create a CLI provides a good mechanisms to generate help
text, from which the list of possible arguments, both mandatory and optional,
can be extracted:

• <xmlFile> - The relative path to the XML Wiki dump.

• -c, –clean - The optional argument to clear output files of content before
writing a new information. Useful option for testing the framework.

• -h, –help - Show this help message and exit. Help Screen is an impor-
tant part of the CLI that lists all other commands.

• -l, –language=<language> - Provide the language of the XML dump
that is being parsed. Default language is English.

• -o, –output=<outputPath> - The NIF files output folder.

• -V, –version - Print framework version information. This is important
as different versions of the Framework can provide known bugs. Printing
the version allows user to track those bugs.

2.5 Project Architecture
Since the related works mentioned in 1.5.1 are based on Java and other Java
Virtual Machine (JVM) based technologies such as Scala, it is best to build the
project on those technologies in order to leverage the existing knowledge and
reuse already developed libraries where possible. It is, however, worth noting
that a large amount of dependencies used will introduce more complexity
into the system. When the dependency’ behavior that is not controlled by
the framework is changed, the whole application workflow may be affected

22

2.5. Project Architecture

until the fix is implemented. Therefore, using only necessary dependencies is
important.

Following the Java application standards, the codebase was split into pack-
ages, with org.dbpedia as the main package prefix, common for all DBpedia-
related projects. A package in Java is used to group related classes, and is
similar to a folder or a directory. We use packages to avoid name conflicts,
and to write a better maintainable code.

• application - package for main Java classes. The application is devel-
oped in such a way that it has several main methods, and depending on
the configuration, only one of those will be used.

• cli - package responsible for generating CLI.

• configuration - package that contains necessary Spring configuration,
further described in ??.

• exception - package responsible for custom exception handling. While
Java has its own Exception handling system, for a better handling it is
recommended to extend the existing interfaces and catch custom excep-
tions instead.

• extractor - main package that contains all the code responsible for the
extraction, parsing and structuring the information.

• splitter - support package that helps to split the xml dump into separate
pages.

After designing the package structure, it is important to identify the gen-
eral class diagram outlay. This outlay is presented in Figure 2.2. The classes
and their purpose are broken down below:

• ExtractionApplicationCLI - main executable class that contains Java’s
main method.

• XmlInput - a class that processes the CLI input parameters, by using
the picocly library[20].

• LanguageIdentifierBean - a singleton class that defines the language
of an XML dump that is processed, set to English by default. A single-
ton classes can only have one instance and usually contains project-wide
settings. Singleton mechanic is handled by the Spring framework, de-
scribed in section ??.

• XmlDumpService - a service class that is a wrapper for all XML-
processing operations.

23

2. Analysis and Implementation

Figure 2.2: Framework Main Class Diagram

• XmlDumpParser - a specific class that processes XML dump and
breaks it up into pages.

• WikipediaPageParser - a parser class that focuses on processing a
single page.

• OutputFolderWriter - a writer class that facilitates the output of a
current project.

2.6 Implementation
2.6.1 Tools and libraries
The chosen language for framework development is Java, as it is used in
DBpedia Extraction Framework, described in section 1.5.1. It is, however,
important to notice that plain Java is not sufficient to achieve the goal of

24

2.6. Implementation

implementing modern Web Framework. For that reason, many other supple-
mentary tools, libraries and other technologies were developed. This current
ecosystem will be described below.

The project was developed using an IntelliJ IDEA[21], a modern Inte-
grated Development Environment (IDE) that is maintained by a Czech com-
pany JetBrains. The company is now also developing a JVM-based language
called Kotlin, that will be able to overcome some of Java’s own shortcomings,
such as a lack of support for functional programming paradigm. For the cur-
rent project, however, it was decided to eliminate unnecessary dependencies
and use Java as a main development language. IntelliJ IDEA was used for
development and testing of the framework.

2.6.2 Spring Framework

The Spring Framework is a Java platform that provides comprehensive in-
frastructure support for developing Java applications. Spring handles the in-
frastructure so you can focus on your application.Spring enables you to build
applications from ”plain old Java objects” (Plain Old Java Object (POJO))
and to apply enterprise services non-invasively. This capability applies to
the Java Standard Edition programming model and to full and partial Java
Enterprise Edition[23].

There is a several versions of Spring Framework, namely the original Spring
and a newer version called Spring Boot. The difference between those two is
that the original Spring leverages the use of XML configurations, while Spring
Boot instead uses Java Configuration classes. For the development, Spring
Boot is used.

For this project, mostly prototype and singleton Bean scopes were used,
with singleton being a default one.

2.6.3 Java Jackson XML Library

The Jackson project is a collection of data processing tools for the Java lan-
guage and the JVM platform. It supports a wide range of data formats such
as Comma-separated values (CSV), Java Properties, XML, and Yet ANother
Markup Language (YAML) through extension components that support the
specific language.

The Jackson XML component is meant for reading and writing XML data
by emulating how Jakarta XML Binding (JAXB) works, although not conclu-
sively.

In this project, Jackson library is used to serialize Java objects into XML
and deserialize them back into Java objects, in order to eventually produce
text output.

25

2. Analysis and Implementation

XmlMapper Class XmlMapper is the main class from Jackson 2.x that
helps the developers in serialization. This mapper is available in jackson-
dataformat-xml jar, that can be easily added to the project using Apache
Maven - project’s dependency management[24].

An example of deserialization can be seen in Listing 2.4. Here, a Mediawiki
class is a POJO class, or in other words a simple mapping of an XML scheme
to a Java class hierarchy, where every subcomponent of a schema is mapped
to a Java subclass.

Listing 2.4: Example of an XML Deserialization

private XmlMapper xmlMapper = new XmlMapper();

private Mediawiki deserializeXml(String dump) throws
IOException {

return xmlMapper.readValue(dump, Mediawiki.class);
}

2.6.4 Article Parsing
The most important part of the Framework is a parsing component. While the
code utilizes Jackson XML Library 2.6.3 to deserialize XML, the article text is
processed in a WikipediaPageParser class. First, we need to clean up the text
from many tags used by Wikipedia[25]. Tags and patterns listed above utilize
regular expressions to match and remove patterns in the text. The exact list
of tags removed is described in the next list:

• Gallery. Both tags(<gallery/>) and their contents are removed.

• Unit Conversion. For this tag, the Framework extracts 2nd and 3rd
parts and separates them by a space, i.e. for ”{{convert|2|km|mi}}”
output is ”2 km”

• Emphasis. Removes single-quote tags from text(”’ or ”) while keeping
its contents intact.

• No Table of Contents. Remove technical ”__NOTOC__” tags that
hide table of contents.

• Indentation. Replaces excessive line breaks with simple
n.

• Math formula. Remove all math formulas(<math>) and their con-
tents.

• IPA. Removes all International Phonetic Alphabet(IPA) tags.

26

2.6. Implementation

Regular expression is done using Java’s Pattern class. In the example of
a regular expression 2.5 that is used to remove gallery, the regular expression
checks for a pattern <gallery>...</gallery>, ignoring cases and including line
breaks as part of the .* regular expression, passing Pattern.DOTALL param-
eter.

Listing 2.5: Example of a regular expression
private static final Pattern GALLERY = Pattern.compile("&

lt;gallery>.*?</gallery>[\\n]?",
Pattern.CASE_INSENSITIVE | Pattern.DOTALL);

2.6.5 NIF Formatting
After the article is parsed, the ParsedPage object is passed to the NifFor-
matter generator class methods to format output lines. This class utilizes
Apache Jena modelling to create RDF models, resources and properties. In
the code listing 2.6, we can find the code that generates RDF resources for
DBPedia and context resourse, and then proceeds to create context’s type
property(http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#Context)
and its starting index(”0”̂̂<http://www.w3.org/2001/XMLSchema#nonNegativeInteger>).

Listing 2.6: Generating Apache Jena context model
Resource dbPediaResource = jenaModel.createResource(dbpediaUrl);
Resource contextResource = jenaModel.createResource(

PERSISTENCE_ONTOLOGY_LINK + "#" + LinkType.CONTEXT.
getCapitalizedTypeLabel());

// Context NIF type
Property rdfSyntaxProperty = jenaModel.createProperty(

RDF_SYNTAX_TYPE);
dbPediaResource.addProperty(rdfSyntaxProperty, contextResource);
// Context beginIndex
Property beginIndexProperty = jenaModel.createProperty(

PERSISTENCE_ONTOLOGY_LINK, "#"+BEGIN_INDEX);
dbPediaResource.addProperty(beginIndexProperty, jenaModel.

createTypedLiteral(beginIndex, XSDDatatype.
XSDnonNegativeInteger));

NifFormatter converts parse page objects into Apache Jena models. For
each article, three different models are produced: context model, page struc-
ture model and links model. Many of the strings required to generate the
model are hardcoded, such as links(DBPedia URL, ontology) or property
names.

27

2. Analysis and Implementation

Context and Link model creation is straightforward, but page structure is
more complicated. Page structure generation is done using a recursive func-
tion. Main method is generatePageStructureEntry, and this method calls a
recursive function generateNodeEntry for the article’s root section. Then a
recursive call processes every paragraph of the section, adding them as section
resource properties with property name ”hasParagraph”. First and last para-
graph have to be added as separate properties, so first and last paragraphs
are added twice with ”firstParagraph” and ”lastParagraph” properties as well
as again with ”hasParagraph”. After processing all section’s paragraph, every
subsection of a section is then processed by recursive call. Subsections then
are constructed with the same algorithm, until all the article’s sections are
processed.

2.6.6 Output generation
OutputFolderWriter is a simple class that utilizes java.io to produce output in
the desired folder. The path to the folder is passed via –output CLI variable,
and OutputFolderWriter creates three files in the folder: nif_context.nt for
article’s context resources, nif_links.nt for article’s links and nif_structure.nt
for article’s section structure. If the output folder is not created yet, the
framework will create it. When the framework processes several articles, Out-
putFolderWriter iteratively appends output of every article to the files.

2.6.7 Dynamic Language Support
The XML-structure of the Wikipedia article does not differ much from lan-
guage to language. There are only a few points to be aware of: Footer headings
and categories. In English, those would be ”See also”, ”References”, ”Further
reading”, ”External Links”, and ”Related pages”, and Categories simply have
a heading ”Category”. Those are the parts that have to be removed from the
articles.

One of the project’s requirements was to implement an easy extensibility
mechanism to add new languages, mention in the Requirements Section 2.1.
This was achieved by adding an abstract class LanguageFooterRemover. This
class has some general functions to parse parts of the text that might be
unique to different languages. Before the framework starts, it processes the
configuration file language_list.xml that is stored in the configuration folder.
The examples of this file’s contents can be seen in Listing 2.7. Such template
can easily be reused to extend the number of supported languages if needed.

Listing 2.7: Example of an language configuration file
<languageContainer>

<language>
<langName>ENGLISH</langName>

28

2.6. Implementation

<categoryName>Category</categoryName>
<footer>See also</footer>
<footer>References</footer>
<footer>Further reading</footer>
<footer>External Links</footer>
<footer>Related pages</footer>

</language>
<language>
<langName>POLISH</langName>

<categoryName>Kategoria</categoryName>
<footer>Przypisy</footer>
<footer>Uwagi</footer>

</language>
</languageContainer>

29

Chapter 3
Testing and Results

The main machine that was used for testing, unless specified otherwise, had
next specifications:

• Processor: 2,7 Hz Dual-Core Intel Core i5;

• Memory: 8 GB 1867 MHz DDR3;

• Graphics Card: Intel Iris Graphics 6100 1536 MB;

• Operating System: macOS Catalina, Version 10.15.6.

Project benchmarks Benchmark Testing measures a repeatable set of
quantifiable results that serves as a point of reference against which prod-
ucts/services can be compared. The purpose of benchmark testing results
is to compare the present and future software releases with their respective
benchmarks.

A benchmark must be repeatable. For instance, with every iteration of
load a test, if the response times varies too much, system performance be
benchmarked. Response time needs to be stable amongst different load con-
ditions.

A benchmark must be quantifiable. For example, the user experience
cannot be quantified in numbers, but time a user spends on a webpage due to
good UI can be quantified.

Next benchmark tests were repeatedly used to test the framework. They
are located in the project’s folder
documents:

• 1 Page test, English language. Expected to be completed quickly and
successfully.

• 257 pages, English language. Execution time is expected to be less than
a minute.

31

3. Testing and Results

• 6738 pages, English language. Execution time is expected to be around
5 minutes.

• 6649 pages, Polish language. Execution time is expected to be around 5
minutes.

• 15118 pages, English language. Execution time is around 25 minutes.

Benchmarking can be used not only for performance testing, but also for
testing the quality of output. While testing this project, the results were con-
stantly compared to an ideal output, that has been provided by the DBpedia
project[26]. Dbpedia website contains ideal output format on the resources
page at https://www.dbpedia.org/resources/nif/. The output on the page
is shown for the Antropology page in Turtle format, but it can be used to
compare output properties for context, links and page structure.

Three different output components were compared separately. On the
listings below, the ideal result can be seen, for the context output in Listing
3.1 - the output containing properties for the context. For links in Listing
3.2, the example contains output for one of the phrases for ”Austroasiatic
languages” page. For page structure in Listing 3.3, the output shows an
example of a Section and its reference to the parent context resource.

Listing 3.1: Exemplary result for NIF Context
<http://dbpedia.org/resource/Anarchism?dbpv=2020-02&nif=context>

<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#isString> "Anarchism is a radical political ... \n*
Textbooks from Wikibooks \n* Data from Wikidata \n* Anarchy
Archives. Anarchy Archives is an online research center on
the history and theory of anarchism" .

Listing 3.2: Exemplary result for NIF Links
<http://dbpedia.org/resource/Austroasiatic_languages?dbpv

=2016-04&nif=phrase_94_109> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> <http://persistence.uni-leipzig.org/
nlp2rdf/ontologies/nif-core#Phrase> .

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#referenceContext> <http://
dbpedia.org/resource/Austroasiatic_languages?dbpv=2016-04&
nif=context> .

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#beginIndex> "94"^^<http://
www.w3.org/2001/XMLSchema#nonNegativeInteger> .

32

3.1. Smoke Testing

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#endIndex> "109"^^<http://www
.w3.org/2001/XMLSchema#nonNegativeInteger> .

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#superString>

Listing 3.3: Exemplary result for NIF Page Structure
<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://
persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
Section> .

<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>
<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#beginIndex> "0"^^<http://www.w3.org/2001/XMLSchema#
nonNegativeInteger> .

<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>
<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#endIndex> "17"^^<http://www.w3.org/2001/XMLSchema#
nonNegativeInteger> .

<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>
<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#referenceContext> <http://dbpedia.org/resource/Ada?dbpv
=2016-04&nif=context> .

...

The output format should be in N-triples[27], better described in Section
1.2.1.

3.1 Smoke Testing
Smoke test is a test or a test suite that covers the main functionality of a
component or system to determine whether it works properly before planned
testing begins[28].

To list the information, those are the advantages of an early and continuous
smoke testing:

• It exposes any integration issues, that is if there any problems in com-
munication between different tools used in the project.

• It uncovers problems early,

• It provides some level of confidence that changes to the software have
not adversely affected major areas (the areas covered by smoke testing)

33

3. Testing and Results

This kind of testing was performed during every stage of the implementa-
tion after each new part of functionality has been added to the framework. It
includes CLI testing, API testing, functionality testing, and output verifica-
tion. During development and testing the framework was running locally on
a Mac-based machine.

A big amount of bugs and errors was revealed and subsequently fixed
during these tests. For example, there were many errors related to the parsing
of Wikipedia articles, and lots of inconsistencies happening during the page
structure translation into the page.

Furthermore, scaling the framework has caused a lot of problems. The
size of an English Wikipedia dump is about 16 GB of data, and parsing it
takes a lot of time. During those tests, it was discovered that such amount
of data can not be handled by the server, and therefore an adequate API for
production purposes can not be easily provided.

For the smoke testing, the next tests were conducted:

• Single-article XML dump in English language.

• Two-page XML dump in English language.

• Other languages support testing, conducted for a single page from a
German segment of Wikipedia.

3.2 Unit Test coverage
Unit testing is a software testing method by which individual units of source
code - sets of one or more computer program modules together with associ-
ated control data, usage procedures, and operating procedures - are tested to
determine whether they are fit for use. The goal of unit testing is to isolate
each part of the program and show that the individual parts are correct. A
unit test provides a strict, written contract that the piece of code must satisfy.
As a result, it affords several benefits[29].

Unit testing finds problems early in the development cycle. This includes
both bugs in the programmer’s implementation and flaws or missing parts
of the specification for the unit. The process of writing a thorough set of
tests forces the author to think through inputs, outputs, and error conditions,
and thus more crisply define the unit’s desired behavior. The cost of finding
a bug before coding begins or when the code is first written is considerably
lower than the cost of detecting, identifying, and correcting the bug later.
Bugs in released code may also cause costly problems for the end-users of the
software. Code can be impossible or difficult to unit test if poorly written,
thus unit testing can force developers to structure functions and objects in
better ways[30][31][32].

34

3.2. Unit Test coverage

An important indicator for the quality of tests is their code coverage. Code
coverage is measured by what percentage of the code is tested by unit tests.
Running an analysis shows that 73% of the current Framework lines, 53% of its
methods, or 52% of its classes are covered by tests. Both unit and integration
tests are included into this statistic, as the analysis tool does not differentiate
those tests.

Several modules are covered by unit tests: page parsing, removal of Wiki
tags and NIF formatting for an output. The listing 3.4 contains a test of
whether the framework forms a beginIndex property with non-negative integer
value 16 in a NIF format.

Listing 3.4: JUnit NIF Formatting Unit Test Class
/**

* Test if Apache Jena builds typed literals correctly
*/
@Test
public void testApacheJenaTypedLiteral() {

//GIVEN
String dbPediaLinkUrl = "http://dbpedia.org/resource/Anarchism?

dbpv=2020-10&nif=word_16_34";
String persistenceOntologyLink = "http://persistence.uni-leipzig

.org/nlp2rdf/ontologies/nif-core";

//WHEN
Model model = ModelFactory.createDefaultModel();
Resource dbPediaResource = model.createResource(dbPediaLinkUrl);
Property property = model.createProperty(persistenceOntologyLink

, "#beginIndex");
dbPediaResource.addProperty(property, model.createTypedLiteral

(16, XSDDatatype.XSDnonNegativeInteger));
ByteArrayOutputStream outputStream = new ByteArrayOutputStream()

;
model.write(outputStream, "NTRIPLE");

//THEN
String modelResult = new String(outputStream.toByteArray());
String idealOutput = "<http://dbpedia.org/resource/Anarchism?

dbpv=2020-10&nif=word_16_34> <http://persistence.uni-leipzig
.org/nlp2rdf/ontologies/nif-core#beginIndex> \"16\"^^<http
://www.w3.org/2001/XMLSchema#nonNegativeInteger> .\n";

Assert.assertEquals(idealOutput, modelResult);
}

35

3. Testing and Results

3.2.1 JUnit Framework
For the framework implementation, a JUnit library was used. JUnit is a
popular Testing Framework used to implement unit tests in Java[33].

For a given project, unit tests were used to test the execution of a WIkipedi-
aPageParser class, that is used to parse separate pages, as well as its supple-
mentary classes, such as a DumpSplitService. You can see the examples of a
unit test used in the project in the Listing 3.5:

Listing 3.5: JUnit Paragraph Parsing Unit Test Class
@Log4j
public class WikipediaPageParserTest {

private static WikipediaPageParser pageParser;
private static WikiPage wikiPage;
private static XmlTransformer contextLanguageTransformer;

@BeforeAll
public static void beforeAll() throws IOException {

pageParser = new WikipediaPageParser(new
ContextLanguageTransformer());

URL textUrl = Resources.getResource("page_test.txt
");

wikiPage = new WikiPage("Anarchism",
Resources.toString(textUrl, StandardCharsets.UTF_8

));
}

@Test
public void parseParagraphsTest() throws IOException,

ParsingException {
Subdivision root = pageParser.buildPageStructure(

wikiPage);
// check that the paragraphs are parsed
assertTrue(root.getParagraphs().size() > 1);
// check that the page has a meaningful structure
assertTrue(root.getChildren().size() > 1);

}
...

}

Those tests are checking for specific methods to return some basically
expected values, as well as test possible corner cases that were previously
discovered as bugs, but were already fixed later. Such tests can be classified as

36

3.3. Integration Testing

regression tests. For example, Listing 3.6 is a test that checks whether <ref>
tags are removed from the text by the WikiTagsRemover class. Those tags
were initially causing issues with parsing, and a unit test has been added to
check whether they are properly removed. If the WikiTagsRemover method is
broken during development, the test will immediately indicate that method’s
output is now broken(or that a ”regression” has happened). Those tests are
run on every project recompilation.

Listing 3.6: Regression Testing
@Test
public void removeRefTags() {

String refText = "<ref>{{cite OED|anarchism}}</
ref> and the <ref>word</ref> <ref>{{cite OED
|anarchism}}</ref>";

refText = StringEscapeUtils.unescapeHtml4(
StringEscapeUtils.unescapeHtml4(refText));

Pattern HTML_TAGS = Pattern.compile("<[^>]+>");
refText = wikiTagsRemover.removeHtmlTags(refText);
log.info(refText);
Assert.assertFalse(HTML_TAGS.matcher(refText).find());

}

3.3 Integration Testing
Integration testing is used to test application as a whole, running through
separate modules in one test [34]. In contrast to the unit tests that only focus
on an individual module, integration tests make sure that the application can
accept input, process it, and then produce output[35]. This output is then
verified against the test data for correctness.

Integration testing in the project tests that all aspects of the Framework
work as intended, from parsing to output, and different cases with varying sizes
and languages are automatically tested whenever the project is recompiled. To
speed up the development, it is possible to skip those tests by compiling the
project with -DskipTests argument, but this is not recommended. Integration
tests compare Framework’s output for prepared articles that are stored in the
test folder with expected values that are manually verified to be true.

Integration tests are placed in the OutputValidationTests class. Every test
is verifying any specific information:

• test*ArticleGeneral - tests that the total amount of nodes/lines in
the context, structure and links files is correct;

37

3. Testing and Results

• test*ArticleContext - tests context output file to verify that every
node and property is in the output. Specific test for an English article
”Anarchism”, for example, tests if the output has correct starting index,
end index, language and source URL properties.

• test*ArticleLinks - tests if the links output file is formed correctly,
meaning that the output contains the link and its properties, as well as
the right starting and ending index. Since there is a lot of links in every
article, only selected links are tested;

• test*ArticleStructure - tests if the page structure output file is formed
correctly. Similarly to links, this test verifies that a selected part of
sections are correctly formed in the output.

Apache Jena is used to parse the output and create a model. The model
is then verified by the integration test, as can be seen on Listing 3.7:

Listing 3.7: Integration Testing - English Article Context
@Test

public void testEnglishArticleContext() throws IOException {
loadArticle("xml_test_page.xml", "ENGLISH");

File outputContext = Paths.get(folder.getRoot().
getAbsolutePath(), OutputFolderWriter.
CONTEXT_FILENAME).toFile();

jenaModel.read(new FileInputStream(outputContext), null,
NTRIPLES);

String testSubject = String.format("http://dbpedia.org/
resource/Anarchism?dbpv=%s&nif=context"

, getCurrentDateString());
String testPredicate = "http://www.w3.org/1999/02/22-rdf-

syntax-ns#type";
String testObject = getPersistenceOntologyUrl("Context");

// test if type is Context
assertStatementContains(testSubject, testPredicate,

testObject);

testPredicate = getPersistenceOntologyUrl("beginIndex");
Literal testObjectLiteral = createTypedLiteral("0",

XSDDatatype.XSDnonNegativeInteger);

// test beginIndex

38

3.3. Integration Testing

assertStatementContains(testSubject, testPredicate,
testObjectLiteral);

testPredicate = getPersistenceOntologyUrl("endIndex");
testObjectLiteral = createTypedLiteral("43346",

XSDDatatype.XSDnonNegativeInteger);

// test endIndex
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

testPredicate = getPersistenceOntologyUrl("predLang");
testObjectLiteral = createLiteral("http://lexvo.org/id/

iso639-3/eng");

// test predLang
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

testPredicate = getPersistenceOntologyUrl("sourceUrl");
testObjectLiteral = createLiteral("http://en.wikipedia.

org/wiki/Anarchism");

//test sourceUrl
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

jenaModel.removeAll();
}

For links testing example, a phrase ”social philosophy” is picked from the
Anarchism article. This phrase starts at position 49 and ends at position 66 in
the cleaned up article text. The test on Listing 3.8 verifies that this phrase was
extracted from the aritcle’s XML and then added to the output. It also tests
the link properties, such as beginIndex, endIndex, identity reference(parent
resource in DBpedia), and its reference context.

Listing 3.8: Integration Testing - English Article Links
@Test
public void testEnglishArticleLinks() throws IOException {

loadArticle("xml_test_page.xml", "ENGLISH");

File outputLinks = Paths.get(folder.getRoot().
getAbsolutePath(), OutputFolderWriter.LINKS_FILENAME)

39

3. Testing and Results

.toFile();

jenaModel.read(new FileInputStream(outputLinks), null,
NTRIPLES);

String dbPediaArticleLink = String.format("http://dbpedia
.org/resource/Anarchism?dbpv=%s",
getCurrentDateString());

String testSubject = String.format("%s&nif=phrase_49_66",
dbPediaArticleLink);

String testPredicate = "http://www.w3.org/1999/02/22-rdf-
syntax-ns#type";

String testObject = getPersistenceOntologyUrl("Phrase");

// test if phrase social philosophy is in the links
assertStatementContains(testSubject, testPredicate,

testObject);

testPredicate = getPersistenceOntologyUrl("
referenceContext");

Literal testObjectLiteral =
createLiteral(String.format("%s&nif=context",

dbPediaArticleLink));
// test reference context
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

testPredicate = getPersistenceOntologyUrl("beginIndex");
testObjectLiteral = createTypedLiteral("49", XSDDatatype.

XSDnonNegativeInteger);

// test beginIndex
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

testPredicate = getPersistenceOntologyUrl("endIndex");
testObjectLiteral = createTypedLiteral("66", XSDDatatype.

XSDnonNegativeInteger);

// test endIndex
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

40

3.3. Integration Testing

testPredicate = getPersistenceOntologyUrl("superString");
testObjectLiteral =
createLiteral(String.format("%s&nif=paragraph_0_550",

dbPediaArticleLink));
// test super(parent) string
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

testPredicate = "http://www.w3.org/2005/11/its/rdf#
taIdentRef";

testObject = "http://dbpedia.org/resource/
Social_philosophy";

// test if phrase social philosophy has an identity
reference

assertStatementContains(testSubject, testPredicate,
testObject);

testPredicate = getPersistenceOntologyUrl("anchorOf");
testObjectLiteral =
createLiteral("social philosophy");
// test anchor of
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);

jenaModel.removeAll();
}

Integration tests also verify that other languages are properly processed.
Currently integration tests cover English and German languages. For a Ger-
man article, integration test on Listing 3.9 verifies that language input pa-
rameter is processed correctly and the context output specifies the correct
language:

Listing 3.9: Integration Testing - German Article Context
@Test

public void testGermanArticleContext() throws IOException{
loadArticle("xml_test_deutsch_one_page.xml", "GERMAN");
....

testPredicate = getPersistenceOntologyUrl("predLang");
Literal testObjectLiteral = createLiteral("http://lexvo.

org/id/iso639-3/deu");

41

3. Testing and Results

// test predLang
assertStatementContains(testSubject, testPredicate,

testObjectLiteral);
}

3.4 End-to-End Testing
End-to-end testing is a Software testing methodology to test an application
flow from start to end. The purpose of End-to-end testing is to simulate the
real user scenario and validate the system under test and its components for
integration and data integrity. What it means for this project is that we
will need to do a test from downloading an XML dump from Wikipedia to
receiving the processed results. Here is the general outlay of a testing process:

1. Download the latest Wikipedia dump[36]. They are released at least
monthly and usually twice a month. Different languages are listed after
the metawiki dumps.

2. Unzip the file, in Unix-like operating systems usually done in bzip2 -d
wikidatawiki-*-pages-meta-history1.xml-p1p224.bz2

Optional Because parsing of the whole XML dump is time-consuming, I have used
a way to reduce the amount of articles that is processed. To do it, it is
possible to execute this command head -n 100000 enwiki-20191101-
pages-articles-multistream1.xml > short_test_100k.xml, and then
properly close off the XML by removing the last article and close the
XML brackets.

3. Build the framework and pass the input parameters to a file. I have
created a script parse_xml_dump.sh that will build the framework if
necessary and run the executable with the XML dump path as the pa-
rameter.

3.4.1 SHACL Shape Validation
To ensure that RDF resources produced are not malformed, Shapes Constraint
Language (SHACL) forms were utilized. SHACL shapes allow to define certain
classes for RDF resources and then to validate any RDF resources against
those shapes, making it possible to run the tests on any output. In the Listing
3.10 a definition for a Context class is shown. SHACL definitions are defined
in a Turtle format, which is another format from NIF format, produced by
the framework.

Listing 3.10: SHACL Context Class definition

42

3.4. End-to-End Testing

ontology:Context
rdf:type rdfs:Class ;
rdfs:label "Context" ;
.

ontology:isString
rdf:type rdf:Property ;
rdfs:domain ontology:Context ;
rdfs:label "Context string" ;
rdfs:range xsd:string ;
.
...
ontology:ContextShape
a sh:NodeShape ;
sh:targetClass ontology:Context ;
sh:property ontology:isStringShape ;
sh:property ontology:sourceUrlShape ;
sh:property ontology:predLangShape ;
sh:property ontology:beginIndexShape ;
sh:property ontology:endIndexShape ;
.

ontology:isStringShape
a sh:isStringShape ;
sh:path ontology:isString ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:severity sh:Violation
.

To validate output against SHACL shapes, various tools can be used, no-
tably an open-source validator to test shapes and data: https://shacl.org/playground/.
Application’s output can be converted to a Turtle format using EasyRDF Con-
verter from https://www.easyrdf.org/converter/.

Current SHACL shapes validate whether properties are present and that
their number does not exceed the required number. For more complex vali-
dation, integration tests are used.

3.4.2 English language parsing
Initially the testing was done on a single English-language article. This test-
ing uncovered many problems with the parsing model, such as the need to
update the recursive function to build the page structure. Most importantly,

43

3. Testing and Results

the first testing helped to understand the vast number of Wikipedia XML
components. Of those, I had to drop the parts that were already covered by
the previous frameworks mentioned in Section 1.5.1, such as infoboxes, im-
ages, files, categories and others, and instead focus only on the text. I also
dropped the citations mentioned in the article’s footer, and instead focused
on the text itself.

In the Listing 3.11, an example of the Framework’s output is shown. Ev-
ery run shows the total amount of pages parsed, as well as what percentage
of articles was not parsed due to Framework’s exceptions. In the case for a
test with around 3400 pages, 96.74% of articles were parsed and added to the
output. If there is a processing error, it is indicated in the output by providing
the reason for an error and part of the paragraph where the error happened,
for example ”Error parsing page Crankshaft: Broken xml component - clos-
ing brace not found for {{ in paragraph {{Main|Science and t...”. Common
errors during parsing usually happen when any Wikipedia structure is not yet
included in the framework, which was the case with tags like <gallery> or
table of contents. While those tags are now added to the project and parsed
correctly, there are some other tags or corner cases not yet added.

Listing 3.11: Example of an English processing command
macs-MacBook-Air:wiki-realtime-extractor mac$./parse_xml_dump.

sh documents/large_documents/short_test_1000k.xml --language
=ENGLISH --clean -o=output

....
22-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page: Cemetery

H culture
2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page:

Corrado Gini
2022-01-31 00:08:36 ERROR XmlDumpParser:121 - Error parsing page

Crankshaft: Broken xml component - closing brace not found
for "{{" in paragraph "{{Main|Science and t..."

2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page:
Central nervous system

2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page: Caste
2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page:

Creation
2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page: Coral

66
2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page:

Rhyming slang
2022-01-31 00:08:36 INFO XmlDumpParser:112 - Parsed page:

Canchim
2022-01-31 00:08:36 INFO XmlDumpParser:135 - Total pages parsed:

3378. Success rate: 96.74%. Seconds passed: 198

44

3.4. End-to-End Testing

3.4.3 Testing other languages
Additionally to English language, I have added other popular Wikipedia lan-
guages. According to the latest Wikipedia statistics, those are the main lan-
guages of Wikipedia[37]:

1. English: 2,567,509 articles, 22.5% of the total number of articles on
Wikipedia;

2. German: 808,044 articles, 7.1%;

3. French: 709,312 articles, 6.2%;

4. Polish: 539,688 articles, 4.7%;

5. Japanese: 523,629 articles, 4.6%.

Dynamic Language Support is described in 2.6.7. To verify that the Frame-
work works in other languages, I have downloaded English, German and Polish
XML dumps and run the framework against them, as seen on Listing 3.12.

Listing 3.12: Example of a Polish processing command
macs-MacBook-Air:wiki-realtime-extractor mac$./parse_xml_dump.

sh documents/xml_test_polish.xml --language=POLISH --clean -
o=output

2022-01-31 00:00:35 INFO XmlDumpParser:112 - Parsed page: AWK
2022-01-31 00:00:36 INFO XmlDumpParser:112 - Parsed page:

Alergologia
2022-01-31 00:00:37 INFO XmlDumpParser:112 - Parsed page:

Aksjomat
2022-01-31 00:00:37 INFO XmlDumpParser:112 - Parsed page:

Arytmetyka
....
2022-01-31 00:00:40 INFO XmlDumpParser:112 - Parsed page:

Alabama
2022-01-31 00:00:40 INFO XmlDumpParser:135 - Total pages parsed:

76. Success rate: 100.00%. Seconds passed: 5

3.4.4 Output format validation
There are several utilities that can be used to validate the output, most notable
Apache Jena and rapper[38]. For the output validation, I have picked rapper,
as it is more lightweight and has the ability to count or parse the provided
N-triples. For example, the command rapper --input ntriples --output
rdfxml --show-graphs nif_links.nt will parse the links and transform it
into RDF/XML format. If this transformation will not throw any exceptions,

45

3. Testing and Results

this will mean that the output is a valid set of N-triples. Rapper tool can also
be used to convert output into a different format, such as RDF.

In the Listing 3.13 I have provided an example of an output of the rapper
utility for a valid Polish article ”AWK”. The rapper tool was able to pick
up the output of a framework and transform it to a different format without
errors.

Listing 3.13: Example of an rapper output for valid and parsed Polish article
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns

#">
<rdf:Description rdf:about="http://dbpedia.org/resource/AWK?dbpv

=2021-12&nif=context">
<ns0:predLang xmlns:ns0="http://persistence.uni-leipzig.org/

nlp2rdf/ontologies/nif-core#">http://lexvo.org/id/iso639-3/
eng</ns0:predLang>

</rdf:Description>
<rdf:Description rdf:about="http://dbpedia.org/resource/AWK?dbpv

=2021-12&nif=context">
<ns0:isString xmlns:ns0="http://persistence.uni-leipzig.org/

nlp2rdf/ontologies/nif-core#">AWK –interpretowany ęjzyk
programowania, którego łągówn ąfunkcj jest wyszukiwani...</
ns0:isString>

</rdf:Description>
<rdf:Description rdf:about="http://dbpedia.org/resource/AWK?dbpv

=2021-12&nif=context">
<ns0:sourceUrl xmlns:ns0="http://persistence.uni-leipzig.org/

nlp2rdf/ontologies/nif-core#">http://en.wikipedia.org/wiki/
AWK</ns0:sourceUrl>

</rdf:Description>
<rdf:Description rdf:about="http://dbpedia.org/resource/AWK?dbpv

=2021-12&nif=context">
<ns0:endIndex xmlns:ns0="http://persistence.uni-leipzig.org/

nlp2rdf/ontologies/nif-core#" rdf:datatype="http://www.w3.
org/2001/XMLSchema#nonNegativeInteger">11266</ns0:endIndex>

</rdf:Description>
<rdf:Description rdf:about="http://dbpedia.org/resource/AWK?dbpv

=2021-12&nif=context">
<ns0:beginIndex xmlns:ns0="http://persistence.uni-leipzig.org/

nlp2rdf/ontologies/nif-core#" rdf:datatype="http://www.w3.
org/2001/XMLSchema#nonNegativeInteger">0</ns0:beginIndex>

</rdf:Description>
...

46

3.4. End-to-End Testing

3.4.5 Scale Testing
For the scale testing, I have implemented logging and a simple parsing success
metric, as some of the articles have a syntax that may deviate from the stan-
dard or the framework’s programmed expectations. For example, some might
contain links that are broken with line separators, or differently encoded XML
components.

To further measure the time that the application will take to parse the
code, I have added the execution time metric. To make sure it is still possible
to execute, I added a –dry-run CLI option that cleans up the output files to
remove output after every execution. Not doing that results in generating
text that takes a lot of disk space. Unfortunately, output clean up slows
down execution by around 3 times, so this option is unusuable for a general
performance testing.

I have run several tests over the English Wiki dump with the next results.
The table shows results with appending and keeping text in output files, that
is faster because the file output connection is not closed after every article
parsing.

of pages parsed Total execution time ms per article Success rate
257 26 110 100%
257 46 178 100%
2087 109 50 88.5%
6738 237 35 87.9%
6649 414 63 96.35%
15118 1433 94 96.47%

47

Chapter 4
Conclusions

The result of this thesis is a Java Framework that allows users to parse and
retrieve theWikipedia XML dump and achieves most of the original objectives,
in some places with a room for improvement:

1. Accept and process input data in the form of Wikipedia XML
dumps. The Wikipedia XML Dump parsing was achieved, and the
process to do so best described in Section 3.4. The statistics show that
the parsing success rate averages on 88% over the large amounts of
articles, meaning that around 12% of articles will contain some kind
of component that will not be parsable by the framework and will be
skipped. These systemic errors can be avoided by further investigation
of Wikipedia’s XML Format.

2. Extract context. Context is extracted and stored in the form of N-
Triples. Some of the contexts might still contain traces of the original
XML code. This can be later fixed by improving the XML removal code.

3. Extract page structure. Page structure is extracted and recursively
built in the form of N-Triples.

4. Extract links. Links are extracted, URLs that link them to the page
structure are created.

5. Provide outputs for context, links and page structure in the
form of N-Triples. Output is printed.

6. Implement language extensibility. Language extensibility mecha-
nism is implemented, new languages can be added in the form of an
XML that is parsed into POJO when the application is starting, better
described in Section 2.6.7. Framework is tested in several languages -
English, German and Polish.

49

4. Conclusions

7. Provide a user interface. User interface is provided in two different
forms and is described in Section 2.4.

4.1 Future improvements
There is a number of future improvements that can be done to this project:

• Code quality improvements. There is currently some unused code, style
warnings and duplicate fragments that can be updated to clean up the
code.

• Article parsing success rate. By analyzing the logs, more articles can be
successfuly parsed by adding more rules to regular expression editing of
the context.

• Add parsing of Wikipedia footers. Only the main article text is currently
parsed by the Framework, the footers, specifically citations, might con-
tain useful information.

• Add horizontal scalability. Execution on the main Wikipedia dump files
takes a lot of time, with 25 minutes for each XML part and 27 parts
available for English, the whole processing can take around 10 to 11
hours. The work, however, can be easily parallelized by splitting the
input to be processed by different machines.

50

Chapter 5
Acronyms

API Application Programming interface.

CLI Command Line Interface.

CSV Comma-separated values.

DRY Don’t Repeat Yourself.

FOAF Friend Of A Friend.

FR Functional Requirement.

GUI Graphic User Interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

J2EE Java 2 Platform Enterprise Edition.

JAXB Jakarta XML Binding.

JVM Java Virtual Machine.

NIF NLP Interchange Format.

NLP Natural Language Processing.

OWL Web Ontology Language.

51

Acronyms

POJO Plain Old Java Object.

RAM Random Access Memory.

RDF Resource Description Framework.

REST Representational state transfer.

RSS RDF Site Summary.

SKOS Simple Knowledge Organization System.

SPARQL SPARQL Protocol and RDF Query Language).

URI Uniform Resource Identifier.

W3C World Wide Web Consortium.

WWW World Wide Web.

XML Extensible Markup Language.

YAML Yet ANother Markup Language.

52

Bibliography

[1] Beckett, D. RDF/XML Syntax Specification. In W3C Recommendation
- RDF/XML Syntax Specification, February 2004.

[2] Berners-Lee, T. Q&A with Tim Berners-Lee [online]. April 2007. Avail-
able from: https://www.bloomberg.com/news/articles/2007-04-
09/q-and-a-with-tim-berners-leebusinessweek-business-news-
stock-market-and-financial-advice

[3] Berners-Lee, T. Linked Data [online]. July 2006. Available from: https:
//www.w3.org/DesignIssues/LinkedData.html

[4] Roussey, C.; Pinet, F.; et al. An Introduction to Ontologies and Ontology
Engineering. London: Springer London, 2011, ISBN 978-0-85729-724-2,
pp. 9–38, doi:10.1007/978-0-85729-724-2_2. Available from: https://
doi.org/10.1007/978-0-85729-724-2_2

[5] Klyne, G. RDF Concepts and Abstract Syntax. In W3C Recommendation
- RDF Concepts and Abstract Syntax, February 2004.

[6] Berners-Lee, T. Uniform Resource Identifiers (URI): Generic Syntax.
RFC 2396, RFC Editor, August 1998. Available from: https://
www.ietf.org/rfc/rfc2396.txt

[7] Sebastian Hellmann, S. A., Jens Lehmann; Brümmer, M. Integrating
NLP using Linked Data. In 12th International Semantic Web Conference,
Sydney, Australia, October 2013.

[8] Hellmann, S.; Lehmann, J.; et al. Linked-Data Aware URI Schemes for
Referencing Text Fragments. 10 2012, ISBN 978-3-642-33875-5, pp. 2–4,
doi:10.1007/978-3-642-16438-5_10.

[9] Hellmann, S.; Lehmann, J.; et al. Integrating NLP using Linked Data. 10
2013, ISBN 978-3-642-38708-1, doi:10.1007/978-3-642-41338-4_7.

53

https://www.bloomberg.com/news/articles/2007-04-09/q-and-a-with-tim-berners-leebusinessweek-business-news-stock-market-and-financial-advice
https://www.bloomberg.com/news/articles/2007-04-09/q-and-a-with-tim-berners-leebusinessweek-business-news-stock-market-and-financial-advice
https://www.bloomberg.com/news/articles/2007-04-09/q-and-a-with-tim-berners-leebusinessweek-business-news-stock-market-and-financial-advice
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1007/978-0-85729-724-2_2
https://doi.org/10.1007/978-0-85729-724-2_2
https://www.ietf.org/rfc/rfc2396.txt
https://www.ietf.org/rfc/rfc2396.txt

Bibliography

[10] E. Wilde, M. D. URI Fragment Identifiers for the text/plain Media Type.

[11] NIF 2.0 Core Ontology [online]. 2020. Available from: https:
//persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/
nif-core.html

[12] Auer, S.; Bizer, C.; et al. DBpedia: A Nucleus for a Web of Open Data.
01 2007, ISBN 978-3-540-76297-3, pp. 722–735, doi:10.1007/978-3-540-
76298-0_52.

[13] DBpedia Facts & Figures [online]. September 2020. Available from:
https://dbpediawww.informatik.uni-leipzig.de/about/facts-
figures

[14] Morsey, M.; Lehmann, J.; et al. DBpedia and the live extraction of
structured data from Wikipedia. Program: electronic library and in-
formation systems, volume 46, 04 2012: pp. 157–181, doi:10.1108/
00330331211221828.

[15] Hellmann, S.; Stadler, C.; et al. DBpedia Live Extraction. 11 2009, ISBN
978-3-642-05150-0, pp. 1209–1223, doi:10.1007/978-3-642-05151-7_33.

[16] DBPedia Language Resources(NIF). January 2022. Available from:
https://www.dbpedia.org/resources/nif/

[17] NIF Core Ontology. January 2022. Available from: https:
//persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/
nif-core.html

[18] Fielding, R. T. Architectural Styles and the Design of Network-based
Software Architectures.

[19] Kapadnis, J. REST: Good Practices for API Design[online]. March
2018. Available from: https://medium.com/hashmapinc/rest-good-
practices-for-api-design-881439796dc9

[20] Picocli - command line interface library [online]. 2020. Available from:
https://picocli.info/

[21] IntelliJ IDEA - Capable and Ergonomic IDE [online]. 2020. Available
from: https://www.jetbrains.com/idea/

[22] JetBrains Java development ecosystem research [online]. 2020. Available
from: https://www.jetbrains.com/lp/devecosystem-2020

[23] Spring Framework Reference Documentation. Available from:
https://docs.spring.io/spring-framework/docs/4.3.12.RELEASE/
spring-framework-reference/htmlsingle/

54

https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://dbpediawww.informatik.uni-leipzig.de/about/facts-figures
https://dbpediawww.informatik.uni-leipzig.de/about/facts-figures
https://www.dbpedia.org/resources/nif/
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://medium.com/hashmapinc/rest-good-practices-for-api-design-881439796dc9
https://medium.com/hashmapinc/rest-good-practices-for-api-design-881439796dc9
https://picocli.info/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/lp/devecosystem-2020
https://docs.spring.io/spring-framework/docs/4.3.12.RELEASE/spring-framework-reference/htmlsingle/
https://docs.spring.io/spring-framework/docs/4.3.12.RELEASE/spring-framework-reference/htmlsingle/

Bibliography

[24] Apache Maven Project [online]. 2020. Available from: https://
maven.apache.org/pom.html

[25] Wikipedia Help:Template. Available from: https://en.wikipedia.org/
wiki/Help:Template

[26] DBpedia Project Link [online]. 2020. Available from: https://
wiki.dbpedia.org/

[27] N-Triples - a line-based syntax for an RDF graph [online]. 2020. Available
from: https://www.w3.org/TR/n-triples/

[28] Smoke Testing. Available from: https://
softwaretestingfundamentals.com/smoke-testing/

[29] Kolawa, A.; Huizinga, D. Automated Defect Prevention: Best Practices
in Software Management. IEEE Computer Society Press. p. 75. -0-470-
04212-0, 2007, ISBN 978.

[30] Boehm, B. W.; Papaccio, P. N. Understanding and Controlling Software
Costs. IEEE Transactions on Software Engineering, volume 14, no. 10,
May 2016: pp. 1462–1477, doi:10.1109/32.6191.

[31] Test Early And Often. Available from: https://docs.microsoft.com/
en-us/previous-versions/visualstudio/visual-studio-2012/
ee330950(v=vs.110)?redirectedfrom=MSDN

[32] Prove It Works: Using the Unit Test Framework for Software Test-
ing and Validation. Available from: https://www.ni.com/en-us/
innovations/white-papers/09/prove-it-works--using-the-unit-
test-framework-for-software-testi.html

[33] JUnit 5 User Guide. Available from: https://junit.org/junit5/docs/
current/user-guide/

[34] Standard - Systems and software engineering. ISO/IEC/IEEE, vol-
ume 15, December 2010: pp. 1–418.

[35] Ould, M. A.; (ed), C. U. Testing in Software Development, BCS (1986),
p71. Accessed, volume 31, October 2014.

[36] Wikimedia Downloads [online]. 2020. Available from: https://
www.w3.org/TR/n-triples/

[37] Top Ten Wikipedias [online]. 2020. Available from: https://
meta.wikimedia.org/wiki/Top_Ten_Wikipedias

[38] Raptor RDF Syntax Library - Raptor RDF parser utility [online]. 2014.
Available from: http://librdf.org/raptor/rapper.html

55

https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://en.wikipedia.org/wiki/Help:Template
https://en.wikipedia.org/wiki/Help:Template
https://wiki.dbpedia.org/
https://wiki.dbpedia.org/
https://www.w3.org/TR/n-triples/
https://softwaretestingfundamentals.com/smoke-testing/
https://softwaretestingfundamentals.com/smoke-testing/
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/ee330950(v=vs.110)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/ee330950(v=vs.110)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/ee330950(v=vs.110)?redirectedfrom=MSDN
https://www.ni.com/en-us/innovations/white-papers/09/prove-it-works--using-the-unit-test-framework-for-software-testi.html
https://www.ni.com/en-us/innovations/white-papers/09/prove-it-works--using-the-unit-test-framework-for-software-testi.html
https://www.ni.com/en-us/innovations/white-papers/09/prove-it-works--using-the-unit-test-framework-for-software-testi.html
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://meta.wikimedia.org/wiki/Top_Ten_Wikipedias
https://meta.wikimedia.org/wiki/Top_Ten_Wikipedias
http://librdf.org/raptor/rapper.html

	Introduction
	Motivation
	Objectives
	Challenges

	Background and related works
	The Concept of Semantic Web
	What is Linked Data?
	RDF Description

	NLP Interchange Format
	Existing Use Cases for NIF

	Linked Open Data and DBpedia
	Extracting Structured Information from Wikipedia
	DBpedia Dataset
	Triplestore
	DBpedia Dataset Web Endpoints

	Related works
	DBpedia Information Extraction Framework

	Analysis and Implementation
	Requirements
	Desired Output
	Context
	Links
	Page Structure

	Design
	General Workflow
	Usability considerations
	REST API
	REST API Endpoints

	Command Line Interface
	Command Line Input Options

	Project Architecture
	Implementation
	Tools and libraries
	Spring Framework
	Java Jackson XML Library
	Article Parsing
	NIF Formatting
	Output generation
	Dynamic Language Support

	Testing and Results
	Smoke Testing
	Unit Test coverage
	JUnit Framework

	Integration Testing
	End-to-End Testing
	SHACL Shape Validation
	English language parsing
	Testing other languages
	Output format validation
	Scale Testing

	Conclusions
	Future improvements

	Acronyms
	Bibliography

