Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer science

Debugging scripts in SPipes editor

Bc. Petr Jordan

Field of study: Open informatics
Subfield: Software Engineering

Supervisor: Mgr. Miroslav Blasko, Ph.D.

August 2021

ii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
s N
Student's name: Jordan Petr Personal ID number: 423317

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Software Engineering

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Debugging scripts in SPipes editor

Master’s thesis title in Czech:

Ladéni skript v SPipes editore

Guidelines:

SPipes (Semantic data pipelines) [1] is an RDF-based scripting language based on
SPARQL motion [2]. It defines data pipelines in the form of an acyclic oriented graph
of modules. Concrete modules are constructed in Java or defined declaratively
within RDF. SPipes Editor [3] is a web-based editor that provides very basic support
to manage SPipes scripts.

The goal of this work is to reimplement or extend the editor with main focus on
advanced features to manage SPipes scripts. The new editor should be extended
with validation and debugging of scripts. Validation will be used to check semantic
constraints of the SPipes language and custom best-practice rules to write scripts.
Debugging will allow defining test-cases to validate the pipeline, set up inputs and
output of modules manually, reuse outputs of previous executions, or query
execution history

Instructions:

1) become familiar with related Semantic Web technologies (OWL, RDF, JSON-LD,
SPARQL, SHACL)

2) describe the current state of SPipes editor

3) review related data pipeline editors and libraries to support debugging,
validation, and visualization of scripts

4) analyze requirements of the new editor

5) design and implement a prototype of new editor

6) test the implemented prototype, including user testing on at least 3 people

7) compare the prototype with its predecessor

Bibliography / sources:

[1] Blasko, Miroslav and Petr Kfemen, "SPipes" (online at
https://kbss.felk.cvut.cz/web/kbss/s-pipes)

[2]TopQuadrant, Inc. "SPARQL motion" (online at http://spargimotion.org)

[3] 2018, Doroshenko Yan, Semantic pipeline editor
(https://dspace.cvut.cz/handle/10467/76534)

[4] Kfemen, Petr, and Zdenék Kouba. "Ontology-driven information system design."
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews) 42.3 (2012): 334-344.

[5] Lanthaler, Markus, and Christian Gitl. "On using JSON-LD to create evolvable
RESTful services." Proceedings of the Third International Workshop on RESTful Design.
ACM, 2012.

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Name and workplace of master’s thesis supervisor:
Mgr. Miroslav Blasko, Ph.D., Knowledge-based Software Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 21.02.2021 Deadline for master's thesis submission: 13.08.2021

Assignment valid until: 19.02.2023

Magr. Miroslav Blasko, Ph.D. Head of department’s signature
Supervisor’s signature

prof. Mgr. Petr Pata, Ph.D.

Dean’s signature

\
lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would first like to thank my supervisor
for his guidance, domain expertise, and
leadership while writing this thesis.

I would also like to acknowledge my
friends Matéj and Hanka for their help,
patience, and endless support during the
thesis writing.

And lastly, to my girlfriend Kristyna
and my friend Petr for mutual motivation
and words of endurance till the end.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within accordance with the methodical
instructions for observing the ethical prin-
ciples in the preparation of university the-
ses.
In Prague, 12. August 2021

Abstract

The SPipes language is a technology that
enables the processing of structured data
in the form of the Semantic Web. This
thesis attempts to improve the existing
SPipes script editor. The thesis first intro-
duces the principles of the Semantic Web
and related technologies. Based on a thor-
ough analysis of the existing editor and
conducted survey, the application archi-
tecture was redesigned and functional and
non-functional requirements for the editor
were defined. Main contributions of this
work are re-implementation of the back-
end part from Scala to Java, which elimi-
nates the compatibility issues arising from
the incompatibility between Scala and the
Spring framework that is used. Special at-
tention was paid to writing tests for most
parts of the application, which simplifies
the detection of potential bugs in the ap-
plication. Major change in architecture
was to split the originally monolithic appli-
cation into several separate services with
the use of Docker and docker-compose,
leading to simpler configuration and eas-
ier deployment of the application. Last
but not least, this thesis introduces new
non-trivial features of the editor - the ca-
pability of validating and debugging of
SPipes scripts and modules.

Keywords: SPipes, Sematic web, RDF,
SPARQL, SHACL, Spring boot, JOPA

Supervisor:
Ph.D.

Mgr. Miroslav Blasko,

vi

Abstrakt

Jazyk SPipes je technologie umoznujici
zpracovani strukturovanych dat Séman-
tického webu. Tato diplomova prace se
zabyvé zlepsenim stavu stavajicitho edi-
toru SPipes skripti. V praci jsou nejprve
predstaveny principy Sémantického webu
a relevantni technologie. Na zakladé ze-
vrubné analyzy jiz existujicitho editoru a
provedené reserSe byla navrzena tprava
architektury aplikace a definovany funkéni
a nefunkci pozadavky na editor. Hlavni
prinosy préce jsou prevedeni backendové
casti z jazyka Scala do Javy za tcelem
odstranéni problému vyplyvajicich z ne-
kompatibility mezi jazykem Scala a Spring
frameworkem, ktery je pouzit. Dale pak
vytvoreni testl, které zjednodusuji odha-
leni potencidlnich chyb v aplikaci, roz-
déleni puvodné monolytické aplikace na
nékolik oddélenych sluzeb vyuzivajicich
Docker a docker-compose, ¢imz se vyrazné
snizi prace spojend se spravnou konfigu-
raci a spousténim aplikace. V neposledni
radé prinasi tato prace nové a netrivialni
funkce editoru - moznost validovat a ladit
editované skripty a moduly.

Klicova slova: SPipes, Sémanticky web,
RDF, SPARQL, SHACL, Spring boot,
JOPA

Pteklad nazvu:
SPipes editoru

Ladéni skripti v

Contents

1 Introduction 1
2 Background 3
2.1 Ontology ...
2.2 Semantic Web 5l
221 Layers
23RDF 7l
231RDFS 9
2320WL..................... 10l
2.3.3 RDF Serialization Formats .. [12
234 SPARQL
2.4 SPARQLMotion
258SPipes ...
3 The Original State of the SPipes
Editor 21
3.1 Functionality
3.1.1 Script Editing
3.1.2 Notifications
3.1.3 Script Execution
3.2 Implementation of the SPipes
Editor......................... 23
3.2.1 SPipes Editor Backend
3.2.2 SPipes Editor Frontend
33 TestS e 25
3.3.1 Backend Tests
3.3.2 Frontend Tests 27
3.4 Design Related Issues and Bugs in
the SPipes Editor...............
3.4.1 Design Issues
342Bugs ...
3.5 Problems Related to the Scala
Language
351 Java. ... 30
3528cala 130
3.5.3 Interoperability between Scala
and Java
3.5.4 Scala with the Spring
framework

3.5.5 Issues in Implementation with
Spring Framework and SPipes

Editor..............ooo.L. 33
3.6 Summary of the SPipes Editor
Original State

4 Review of related technologies
4.1 Graph-based RDF visualization
toolS L 137

4.1.1 Visualization tools 37
4.1.2 Graph database............
4.1.3 Standalone solutions for data
visualization [41]
4.1.4 Summary
4.2 Data pipeline editors
4.3 Visualization libraries
4.3.1 Original evaluation criteria . .
4.3.2 Original analysis results.
4.3.3 Libraries analysis
4.3.4 Feature matrix 47|
4.3.5 Evaluation of the results
4.4 Validation 48]
441 SHACL 48]
4.4.2 SHACL execution engines . . .
5 Requirement Analysis 51|
5.1 New SPipes Editor............
5.2 Analysis of the SPipes editor
requirements 52
5.2.1 Prioritization Technique
5.2.2 Functional Requirements. . . .
5.2.3 Non-Functional Requirements
5.2.4 USE-CASES ..o vvverrrrnnnn. 63|
6 Architecture Design and
Technologies 65|
6.1 Application structure..........
6.1.1 Server side 166
6.1.2 Client side 66/
6.2 Technology stack
6.2.1 Server side 66/
6.2.2 Client side 68
6.3 Design of non-trivial requirements
6.3.1 Execution 69l
6.3.2 Debugging
6.3.3 Script validation
6.3.4 Modules grouping and
collapsing.....................
6.3.5 Module transfer............
6.3.6 Script to form
6.3.7 The actual state of the system
for multiple users
7 Implementation 75
7.1 Legacy SPipes editor update . ..
7.1.1 Technology stack update

7.1.2 Testability

7.1.3 Development simplification . .
7.1.4 Ul Layout.................
7.2 Dockerization of SPipes editor . .
7.2.1 Docker and Docker compose .
7.2.2 Containers and Docker
COMPOSE . . v vvveeeeaaen 79
7.2.3 Reverse proxy
7.3 Requirements implementation . .
7.3.1 Implementation of Functional
Requirements
7.3.2 Implementation of
Non-functional Requirements . ..

8 Testing and Evaluation 91
8.1 Testing
8.1.1 Unit tests
8.1.2 Browser testing
8.1.3 User testing
8.1.4 User testing evaluation
8.2 Comparison with original SPipes

Editor............ 100!

8.2.1 Implementation Comparison [100]

8.2.2 Features Comparison 101
9 Conclusion 103
9.1 Summary 103
A Code Attachments 105
B Installation guide 107|
B.1 Installation via Docker 107l
C Attachment 109
D Bibliography 111

viii

Figures

2.1 Domain model diagram.........
2.2 Layered architecture of the
Semantic Web [96] (g

2.3 An example of informal graph [97]
2.4 An example of SPARQLMotion

script visualization [89]
2.5 Hello-world.sms.ttl visualization as

agraph...........,
3.1 Original SPipes editor
3.2 Script editing,
3.3 Notification message
3.4 Script execution

3.5 High level deployment diagram .

4.1 Linked Data Visualization Tools
Timeline [3]
4.2 CytoScape visualization

example 21]

4.3 Collapsing example
5.1 SPipes language terminology . . .
5.2 Function execution............ 59
5.3 Module debugging proposal
5.4 Script validation
5.5 Use-case diagram
6.1 Application structure..........

6.2 Spring Boot Flow Architecture

5] « oo
6.3 Skosify script grouping and
hierarchy example. Source is SPipes

documentation.
6.4 Module transfer. Source is adjusted
from SPipes documentation

7.1 Life cycle of the integration test
7.2 Hello-world3.sms.ttl script

execution detail 78l
7.3 Deployment to the cloud with

Docker [61] ...t

7.4 Deployment diagram
7.5 Scripts page.
7.6 SForms modal widows 82|
7.7 Modul menu]3]
7.8 List of executions R’7
8.1 Test coverage

ix

8.2 Hello-world3.sms.ttl script

execution detail

Tables

4.1 Visualization libraries usage in
Visualization tools, Graph database,
and Standalone solutions

4.2 v - supported feature $ - payed
feature 7 - not exactly support
requirements X- not supported ...

7.1 Best practise to write SPipes
language and custom best-practice
rules to write scripts. The % is out of

scope SHACL validation
8.1 Browser support
8.2 Participants profile............
8.3 Scenarios duration for every

participant 97|

8.4 Implementation comparison
between original and new SPipes

8.5 Original and new SPipes editor
functions comparison 102

Chapter 1

Introduction

In recent decades, the amount of information available on the World Wide
Web (WWW) has increased dramatically. However, it was clear from the
beginning that to exploit the Web’s potential, information needed to be stored
in a way that computers could retrieve and interpret it in a similar way that
humans do. The Semantic Web is an extension of the WWW and consists
of structured or semi-structured data that are semantically annotated, thus
meaning of the data is recorded and available.

An important concept of the Semantic Web is the Resource Description
Framework (RDF) — a general framework for description, exchange and reuse
of metadata so that information can be processed across the Web without the
loss of its context. On the basis of RDF, several languages have been created,
one of being the SPipes. SPipes is a scripting language which allows to
visualize data processing through its graphical notation representing pipelines
as scripts consisting of modules (processing nodes) and dependencies between
them showing the dataflow direction.

One of the limitations of SPipes is the absence of reliable and user-friendly
tool aiming for simpler development of SPipes scripts that would be also
able to execute them and which would provide debugging and validation
capabilities.

The main objective of this thesis is to improve the existing SPipes editor —
a Scala/React web application that allows the user to visualize and edit the
associated folder with SPipes RDF Turtle(.ttl) scripts. The SPipes editor
identifies functions in the script and subsequently runs them via SPipes
engine.

This work aims to address known problems of the previous version of the
SPipes editor, as well as providing in-detail analysis in order to reveal other
issues making further development complicated. The contribution of this
thesis encompasses re-implementing of the editor in order to mitigate the
problems arising from the interoperability issues between Scala and the Spring
framework. Furthermore, the formerly neglected issue of tests or notifications
is addressed and overall simplification of the application is achieved by design
changes and its containerization. Nevertheless, the main contribution should
be seen in the addition of new advanced features such as script validation
and script debugging.

1. Introduction

The structure of this thesis is as follows. First, we provide a background
of SPipes editor and its related technologies in Chapter 2. We give an
introduction to Semantic Web and languages for work with Semantic web.
Then, SPARQLMotion and its dialect the SPipes language are introduced.

In Chapter 3 the original state of the SPipes editor is reviewed. We
briefly explain the editor functionality and describe the architecture and
implementation details. Next, the state of the editor is summarized, shaping
the next direction for the development.

Chapter [4| reviews related technologies of the RDF data visualization tools,
which helps to select a proper visualization library for the new editor.

Chapter 5| describes the functional and non-functional requirements of the
new editor.

In Chapter |6 the architecture of the editor and technologies selected for
implementation are proposed. The solution and design of the more complex
requirements left for future implementation are described.

Chapter |7| describes the implementation of the new editor based on the
previously defined requirements.

Chapter [8 summarizes application testing and evaluates user testing based
on created test scenarios. Finally, the comparison of the new editor with the
old one is provided highlighting the benefits of the new one.

Chapter 2
Background

This chapter provides a brief overview of the technologies related to the main
topic of this thesis — the SPipes editor. It introduces the term ontology, the
very concept of the Semantic Web and associated technologies and languages
such as Resource Description Framework (RDF), RDF Schema, and the Web
Ontology Language (OWL). Further, selected serialization formats of RDF
are presented herein. As the SPipes are heavily based on the SPARQLMotion
scripting language, a separate chapter is devoted to its description. Finally,
the SPipes scripting language itself is introduced.

has editor
Topbraid Composer

isf query language of
; is constrain
language of

n . extinds
has editor extends
SPipes Editor

Declarative language Serialization format Editor

Figure 2.1: Domain model diagram

B2 Ontology

An ontology, in its original meaning, is a philosophical discipline that deals
with being or existence. For the field of computer science, the term was
borrowed Gruber et. al. [32] as an “explicit specification of a conceptualiza-
tion”. In other words, ontologies define relationships between concepts from a
certain domain of knowledge or discourse. Ontologies can be represented by
semantic networks, ontological dictionaries, and models, as well as thesauri

3

2. Background

and classification schemes.

Each ontology formally defines terms and relationships. Most commonly,
ontology is represented by a taxonomy, a scheme of classification in which
things are classified into groups or types, and a set of derivation rules. The
ontology data model generally consists of four basic types of elements [63]:

® An individual (object, instance) is the basic building block of an
ontology data model. An entity can be specific (human, table, molecule)
or abstract (number, concept, event)

B A class is a set of entities of a certain type. A subset of a class is a
subclass. A class can contain both entities and subclasses. A taxonomy
is usually defined on a set of classes (using multiple inheritance) [86].

® An relation describes a property, characteristic, or parameter of an
entity. Each relation of a particular entity contains at least a name and
a value. The relation is used to store certain information related to a
given entity.

® An axiom is used to place constraints on the meanings of definitions or
instances in order to ensure that ontology is consistent.

In summary, as described in [86], an ontology is an set of representinal
primitives consisting of:

®m A set of terms or vocabulary
® A set of relationships between the terms

® A set of logical axioms that defined the desired vocabulary

The possible applications of ontologies are wide and apply in many fields.
They expand the functionality of the World Wide Web — for example, they
increase the accuracy of search engines. In e-commerce, they ensure a
better understanding between the seller and the customer, and terminological
ontologies can help in text translation or summarization.

Ontologies can be represented by formal, semi-formal, or informal languages
—on the web, they are defined by artificial formal (ontological) languages. The
first “web” ontological languages were represented by SHOE (simple HTML
Ontology Extension) and Ontobroker developed in the mid 1990s, which
enabled incorporation into the source code of web pages both metadata about
the objects to which these pages relate, as well as the ontology defining the
semantics of this metadata itself [86]. In the late 1990s, the RDF specification
of metadata standard was published by the W3C consortium. From this
moment ontological languages which provide RDF-compatible metadata were
used — RDF in XML syntax, RDF Schema, OWL, and Turtle (Terse RDF
Triple Language). Also, an alternative to ontological languages was developed
— the Topic Maps technology, which enables the creation and management of
the so-called thematic maps.

2.2. Semantic Web

. 2.2 Semantic Web

The semantic web can be described as a way to implement the ontological
approach to networks of computers, i.e., to represent the network content
in a machine-processable form. The idea of ontological approach appears
in seminal 1994 when Berners-Lee et al. [12] in a proposal for World Wide
Web (WWW) future development stated the need for “Evolution of objects
from being principally human-readable documents to contain more machine-
oriented semantic information”. Further interpretation of the semantic web
varied; however, the main concept of the global Web of machine-readable data
remained unified [I3]. Nowadays, the term semantic web is generally used for
describing both the technologies which handle the data and the repository of
datasets introduced by these technologies — the Semantic Web [22].

The original WWW primarily consists of unstructured data which are linked
together using plain references (hyperlinks). On the contrary, the Semantic
Web, being the extension of WWW, consists of structured or semi-structured
data that are semantically annotated. It implies that information about the
relations and interconnections between them is recorded on this network [20].
The Semantic Web presents a view of documents not only as text and graphic
files, but also carries the information about their meaning. As all of the
information is clearly-defined and computer interpretable, it enables easier
manipulation and interpretation of real-world domain knowledge [81].

The Semantic Web is created and structured according to certain rules and
standards such that the required information could be effectively obtained.
The Semantic Web expects implementation of standards for semantic (RDF),
structural (XML), and syntactic (URI) components in the web documents
architecture. The Semantic Web framework has a layered architecture (also
known as Semantic Web Stack, Semantic Web Cake or Semantic Web Layer
Cake [22]) where various technologies are layered in a way that each layer is
based on the lower layer (example in Figure 2.2)). Each layer (i.e., technology)
in the Semantic Web framework has its own purpose (data networking, seman-
tic annotation, knowledge representation, query of semantic data, reasoning
and inferencing, software user agents, etc. [20]) enabling creation of Semantic
Web application.

B 221 Layers

Let us now briefly describe the layers of the Semantic Web on a [Figure 2.2|
which is based on a survey presented in [81]. The bottom layer consists of IRI
(Internationalized Resource Identifier) to identify individual objects from the
international Unicode character set, which is the base for both the standard
Web and Semantic Web. IRI is a Unicode string that conforms to the syntax
defined in RFC 3987, and it is a generalization of URI (Universal Resource
Identifier) [40].

The following layer includes XML markup language, XML Schema
and Namespaces. The XML technologies enable the creation of individual

5

2. Background

User Interface & Applications

Tru st

1

Ontology
Query: OW'— Rule:

SPARQL RIF
RDFS l

Data interchange:
RDF

Crypto

XML

URI/IRI '

Figure 2.2: Layered architecture of the Semantic Web [96]

descriptions in the Semantic Web in XMI-based standards. This brings a
benefit of having the created documents in form of structured data. The
Namespaces in XML enable the use of tags, thus facilitating readability of
the documents.

As previously mentioned, the RDF standard is a kind of extension of XML.
In the following layer, the combination of XML and RDF technologies defines
one of the basic languages for storing information on the Semantic Web —
XML/RDF. The XML/RDF language provides the ability to assign certain
properties to a specific web source, or to describe relationships between
selected web resources. In the Semantic Web, a resource is any object which
has an URI/IRI identifier assigned. When using only XML without the
RDF standard, the need for URI/IRI identifier is not required. Thus, the
requirement is not generally met in the standard Web as it is written using
HTML which originates in XML.

Next layer consists of the already mentioned RDFS language which
enables creation of simple RDF schemes — classes, properties and taxonomies
can be defined here.

2.3. RDF

All the remaining technologies are based on the RDF format. RIF (Rule
Interchange Format) is a format for creation and modification of rules on the
Semantic Web. OWL is an ontological language that defines dictionaries for
interpretation of information semantics and derivation of further information
using applicable logic. It is a more expressive alternative to RDFS and
it allows creation of more complex domain models. SPARQL is a query
language which evaluates queries over RDF.

Encryption and digital signatures are applied in order to ensure credi-
bility and authenticity of the documents (referenced as Crypto in Figure 2.2)).
Upper layers are still not standardized by W3C consortium, thus not com-
pletely resolved. Unifying logic serves for automatic derivation of information
from ontologies and semantic data. The Proof layer is meant to determine
credibility of the obtained information. In a similar way, the Trust layer is
based on the verification that the information comes from a trusted source.
The User Interface and Applications is the final layer in the Semantic Web
and it allows users to employ the described technologies and principles.

Several of the layers in the architecture are already standardized by W3C,
for example the RDF (Resource Definition Format), OWL (Web Ontology
Language), or SPARQL (SPARQL Protocol and RDF Query Language).
Others, especially the upper layers, are still waiting to be standardized.

Selected technologies mentioned in this chapter will be further described in
more detail.

B 23 RDF

The Resource Description Framework (RDF) is, as already mentioned in 2.1,
a recommendation of the W3C consortium for representing the structure of
web metadata [65]. It is a general framework for description, exchange and
reuse of the metadata so that information can be processed across the Web
without the loss of meaning.

The abstract RDF syntax (i.e, a data model that is independent of a
particular concrete syntax) has two key data structures: RDF graphs and
RDF datasets. RDF graphs are sets of triples (statements) consisting of
subject — predicate — object. In each statement, the subject is the resource,
predicate is the property (i.e., what we claim about the subject), and object
is the property value [86]. The basic syntax of RDF recommended by W3C
is based on XML. By the so-called serialization, the individual elements of
the RDF statement are arranged in a specific way into XML elements and
attributes.

RDF datasets organize collections of RDF graphs, and comprise a default
graph and zero or more named graphs [65]. An example of an informal graph
of triples can be found in [66]. The triples defining the graph in Listing |1| are
following:

An important ability of RDF graphs is evident from the node “The Mona
Lisa”. In two triples, the Mona Lisa represents the subject, but in one triplet,
it is the object. This ability to have the same resource as subject and object

7

2. Background

<Bob> <is a> <person>.

<Bob> <is a friend of> <Alice>.

<Bob> <is born on> <the 4th of July 1990>.

<Bob> <is interested in> <the Mona Lisa>.

<the Mona Lisa> <was created by> <Leonardo da Vinci>.

<the video 'La Joconde & Washington'> <is about> <the Mona Lisa>

Listing 1: Example of triples [66]

Alice Leonardo Da Vinci

is interested in

’c!é The Mona Lisa
%
G

Person 14 July 1990
H La Joconde a Washington

Figure 2.3: An example of informal graph [97]

makes it possible to find connections between the triples [66]. Thus, based
on these relationships, a query language SPARQL can be subsequently used
over the graph to obtain information, e.g., people interested in Leonardo Da
Vinci.

Now, let us discuss the possible data types that can occur in triples:
IRIs, literals, and blank nodes [67]. International Resource Identifier (IRI),
a generalization of URI as mentioned above, identifies a resource. RDF
conceptualizes anything (and everything) in the universe as a resource. A
resource is simply anything that can be identified with the IRI. The URLs
(Universal Resource Locators), which are used to identify where digital
information can be retrieved, are one form of IRI. While URLs tell you where
to find specific information, they also provide a unique identifier for the
information. IRIs generalize this concept further by saying that anything,
whether you can retrieve it electronically or not, can be uniquely identified in
a similar way. Thus, other forms of IRI provide an identifier for a resource
without implying its location or how to access it [66]. IRIs can appear in all
three positions in a triple.

Literals are, simply said, values that are not IRIs. Thus literals are primitive
literal values such as strings, integers, decimals, booleans, etc. For example,
in the graph in "the 4th of July, 1990" is a literal. In RDF triples,

8

2.3. RDF

literals can appear only in the object position.

Blank nodes are used when we want to talk about resources without using
IRI. Blank nodes then serve as variables in algebra; we can use them for
representing things without assigning them specific values. Blank nodes can
be subjects or tobjects.

B 2.3.1 RDFS

RDF Schema (Resource Description Framework Schema, or abbreviated as
RDFS) is an ontological language developed by W3C in late 1990s. In this
chapter, description of RDFS will be provided based on the official W3C
Recommendation [68].

RDFS represents a semantic extension which adds mechanism to RDF for
distinguishing types, basic manipulation with classes and properties. Thus,
it provides mechanisms for describing groups of related resources and the
relationships between these resources. To put it simply, RDFS allows designers
to create their own ontologies and RDF vocabularies.

The class and property system of RDFS have many similarities with
traditional object-oriented languages such as Java. The main difference of
RDF Schema is that instead of defining a class in terms of the properties
its instances may have, RDF Schema describes properties in terms of the
classes of resource to which they apply. For this reason, domain and range
mechanisms are applied. An illustrative example is provided in [68]: the
egitauthor property has a domain of eg:Document and a range of eg:Person,
whereas a classical object oriented system might typically define a class
eg:Book with an attribute called eg:author of type eg:Person. The main
advantage of this property-centric approach is that it is easy to subsequently
define additional properties with a given domain or range.

RDFS, unlike richer vocabulary or ontology languages such as OWL, does
not attempt to enumerate all the possible forms of representing the meaning
of RDF classes and properties. The RDFS language consists of a collec-
tion of RDF resources that can be used to describe other RDF resources
in application-specific RDF vocabularies. The core vocabulary is defined
in a namespace identified by IRI http://www.w3.0rg/2000/01 /rdf-schema,
conventionally associated with the prefix rdfs:.

Resources can be grouped into units, in RDFS called classes. The resources
are then instances of the given class. Several key classes in RDFS are:

m rdfs:Resource All things described by RDF are called resources, and
are instances of the class rdfs:Resource. rdfs:Resource is an instance of
rdfs:Class.

® rdfs:Literal The class rdfs:Literal is the class of literal values such as
strings and integers. Property values such as textual strings are examples

The eg is a prefiz, which allows you to write prefix names instead of having to use full
URIs everywhere.

2. Background

of RDF literals. rdfs:Literal is an instance of rdfs:Class. rdfs:Literal is a
subclass of rdfs:Resource.

® rdf:Property rdf:Property is the class of RDF properties. rdf:Property
is an instance of rdfs:Class.

All properties used in the RDF document are automatically members of
the rdf:Property class. Some of the basic properties defined in RDFS are:

® rdfs:range is used to state that the values of a property are instances
of one or more classes.

rdfs:domain is used to state that any resource that has a given property
is an instance of one or more classes

® rdf:type is used to state that a resource is an instance of a class.

RDF Schema is a basic ontological language and comes with several limita-
tions. To name a few [68], the following constraints cannot be expressed in
RDFS:

B cardinality constraints on properties, e.g., that a Person has exactly one
biological mother.

® defining property to be transitive.

B defining that a given property is a unique identifier for instances of a
particular class.

® defining that two different classes (different IRIrefs) represent the same
class.

® defining that two different instances (different IRIrefs) actually represent
the same individual.

® defining constraints on the range or cardinality of a property that depend
on the class of resource to which a property is applied, e.g., being able
to say that for a soccer team the ex:hasPlayers property has 11 values,
while for a basketball team the same property should have only 5 values.

In order to describe data in such a way, an ontological language with greater
expressive ability is needed. One of such languages is introduced in the next
section.

B 232 OwL

OWL (Web Ontology Language) is a language standardized by the W3C
consortium for publishing and sharing ontologies. OWL is based on RDF and
RDF Schema and serves as an extension of RDFS vocabulary for describing
properties and classes. By providing additional vocavular terms and formal
semantics, it is a much more effective tool for interpreting information on the
Web than the XML, RDF and RDFS technologies [72].

The main uses of OWL can be summarized in the following three points [62]:

10

2.3. RDF

1. Creating a domain by defining classes and their properties.
2. Defining instances (elements of classes) and their properties.

3. These classes and instances to an acceptable degree using the formal
semantics of the OWL language.

When comparing RDFS and OWL as its extension, several points can be
observed [64]:

® OWL uses all structures from RDFS (domain, range, etc.)

® The most significant extension is the ability to use not only named
classes, but also anonymous classes defined by a logical expression.

® Range of properties are explicitly distinguished as objects (the value is
an instance of a class) and data (the value is a literal).

® OWL gives the possibility to formulate a negative statement.

Herein, selected terms defined by OWL: owl: imports and owl: Ontology,
will be briefly described, based on [62], as they are key elements in the SPipes
scripts modularization. Ontologies can be grouped under the owl: Ontology
tag. The owl: Ontology element is a place to collect much of the OWL meta-
data for the document. The owl: imports statement provides an include-style
mechanism. Owl: imports inserts ontology into a document, specified by
an XML attribute rdf: resource, possibly accompanied by a declaration of
namespace.

An example can be seen in [2}

<owl:Ontology rdf:about="">
<rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion rdf:resource="http://www.w3.org/TR/2003/PR-owl-guide-20031215/wine"/>
<owl:imports rdf:resource="http://www.w3.org/TR/2004/REC-owl-guide-20040210/foo0d"/>
<rdfs:label>Wine Ontology</rdfs:label>

Listing 2: OWL:Ontology example [62]

There are several different syntaxes available for persisting, sharing, and
editing OWL ontologies [36]:

® the Functional OWL syntax,
® RDF-based syntaxes (RDF/XML, Turtle),
= OWL/XML,

® the Manchester OWL syntax

11

2. Background

It is important to point out that the OWL language is not defined using a
particular concrete syntax; however, RDF /XML is specified by W3C as the
default exchange syntax, while some of the other syntaxes are mentioned in
the W3C notes.

There are several species of OWL language, collectively referred to as
OWL Family. OWL is used to denote the 2014 specification, OWL2 the 2009
specification. OWL specification includes three sublanguages with different
levels of expressiveness: OWL Lite, OWL DL and OWL Full. OWL 2 is
defined by three sublanguages: OWL 2 EL, OWL 2 QL, and OWL 2 RL.
In this thesis, we will not describe individual sublanguages in greater detail;
however, when creating ontologies using OWL, requirements and the specific
sublingual relationship with RDF need to be taken into account in order to
choose the most suitable option.

B 2.3.3 RDF Serialization Formats

As mentioned in previous chapters, RDF, unlike some other data models,
is not bound by a single serialization format. The t¢riples statements (i.e.,
subject, predicate, object) can be represented using various languages, e.g.,
Turtle, N-Triples, JSON-LD, and RDF/XML. Given that each language has
its own unique syntax, it depends on the specific purpose for which we serialize
the linked data. In this chapter, selected serialization formats important for
this project will be briefly introduced.

B Turtle

Turtle (Terse RDF Triple Language) is a syntax and file format for describing
the information in RDF dama model. Standardized version of Turtle was
published in 2014 by W3C. A Turtle document provides a way to represent
RDF graphs as text [93]. Compared to other formats, Turtle is easily readable
by humans, making comprehension and processing simple. One of the features
that facilitate the more user-friendly form is the possibility of truncating
triples using prefixes at the beginning of a turtle file. Furthermore, it allows
grouping of triples with an identical subject into blocks, making the code
more structured(object oriented) and clearer [I]. Apart from the readability
of a Turtle file, thanks to the lack of closing lines at the beginning and end of
the file, the data can be streamed in blocks (unlike in RDF/XML) [93]. An
example of a Turtle file is provided in Listing [3}

l JSON-LD

JSON-LD (JavaScript Object Notation for Linked Data) is a data serialization
format based on JSON language, standardized by the W3C consortium [45].
The syntax was designed to facilitate a smooth upgrade path in JSON systems
— it allows existing JSON to be interpreted as linked data with minimal changes.
JSON-LD is primarily intended to build interoperable Web services, as well

12

10

11

12

13

14

15

16

17

18

19

2.3. RDF

BASE <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX schema: <http://schema.org/>

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX wd: <http://www.wikidata.org/entity/>

<bob#me>
a foaf:Person ;
foaf:knows <alice#me> ;
schema:birthDate "1990-07-04"""zsd:date ;
foaf:topic_interest wd:(Q12418 .

wd:Q12418
dcterms:title "Mona Lisa" ;

dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .

<http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
dcterms:subject wd:Q12418 .

Listing 3: Example of Turtle [66]

as store the linked data in storage engines based on JSON [45]. JSON-LD
provides all features available in JSON and further introduces [45]:

B identification of JSON objects with IRIs

B clearly distinguishing shared keys in different JSON documents using
IRIs and contezt (a set of rules for JSON-LD document interpretation)

B the way a resource on different site on the Web can be assigned to JSON
object value

B annotation of string with language
B coercion of values to specific data types

® the way of writing down more than one directed graph in a single
document

The concept of context is the key functionality of JSON-LD as it facilitates
mapping from JSON to RDF. It links the concepts in ontologies to object
properties in a JSON document.

JSON-LD combines three ways of data processing: accessing of raw triples,
use of graph processing API, and converting linked data to tree structures [46].
An example of a JSON-LD document can be found in Listing |4k

13

10

11

12

13

2. Background

"@context": "example-context.json",
"@id": "http://example.org/bob#me",
"@type": "Person",
"birthdate": "1990-07-04",
"knows": "http://example.org/alice#me",
"interest": {
"@id": "http://www.wikidata.org/entity/Q12418",
"title": "Mona Lisa",
"subject_of": "http://data.europeana.eu/item/04802/243F",

"creator": "http://dbpedia.org/resource/Leonardo_da_Vinci"

Listing 4: Example of JSON-LD [66]

B 2.3.4 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is an ontological
query language for RDF and it is standardized by W3C [82]. Queries are,
like in RDF, expressed using subject-predicate-object triples, called here basic
graph patterns. In SPARQL, a variable can be used in any of the three
positions. SPARQL can return none, one, or more answers. The query is
typically performed on one RDF dataset — a set of RDF documents belonging
to a specific endpoint. Such an endpoint is the URL address to which queries
can be sent and results received via the HT'TP protocol.

Compared to query languages for relational databases, there are similarities
in keywords (e.g., SELECT, WHERE, and FROM). SELECT query consists
of two main components: a list of selected variables and a WHERE clause
which specifies the graph pattern to match (although WHERE clause can
be omitted). The SELECT query returns a table with the selected variables
as columns and rows representing the matched graph patterns. By the
query, we are searching for matching triples using the triple patterns and the
variables serve as wild cards that match any node. An example is given below
in Listing |5 where we make a query using a single triple pattern 7picture
rdf:type :Picture. In this case, 7picture is the variable, rdf:type is the predicate,
and :Picture is the object.

SELECT 7picture
WHERE {

?picture rdf:type :Picture .

Listing 5: SPARQL SELECT example

14

~ [=2] (e - w [-

© oo ~ [=2] ot - w N -

-
o

-
—

2.4. SPARQLMotion

SPARQL provides many other expressions with similar functionality as
query languages for relational databases, such as FILTER, ORDER BY, DIS-
TINCT, GROUP BY, UNION, DESCRIBE, etc. Some additional expressions,
however, provide advantageous mechanisms for dealing with the RDF data
model. For example in some situations, we would like to construct a new
graph from the solution set but the standard SELECT expression returns
a table. In SPARQL, it is facilitated by the CONSTRUCT clause which
replaces the SELECT clause. The other clauses work in exactly the same
way as in the SELECT form. An example of the CONSTRUCT clause is
provided in Listing |6;

CONSTRUCT {

?picture a :Picture

}
WHERE {
?pCollection a :PictureCollection ;
:picture 7picture
}

Listing 6: SPARQL CONSTRUCT and WHERE example

The CONSTRUCT expression returns read-only access to data. If we want
to alter the data (e.g., add or delete triples into/from the RDF database), the
INSERT and DELETE clauses can be used, such as in this example provided
in Listing |7t

DELETE {
?picture :style 7sl
}
INSERT {
?picture :style 7s2
}
WHERE {
?picture a :Picture ;
:price 7sl
BIND("landscape" AS 7s2)
}

Listing 7: SPARQL alter data example

B 2.4 SPARQLMotion

SPARQLMotion [83] is a scripting language based on RDF which allows
to visualize data processing pipelines through its graphical notation. It

15

2. Background

interconnects individual processing steps (queries and data transformations)
in such a way that the output of the previous step represents the input for
the next one. Generally, RDF graphs are passed between the steps; however,
named variables pointing to RDF nodes and XML documents can be also
used.

In SPARQLMotion, processing steps can be chained together to create
complex processing pipelines which are able to assemble different sources of
data. Thus, new applications such as reports, information dashboards, or
data exchange between the backend systems can be created [92].

SPRAQLMotion scripts are composed of modules, where each module
represents one processing step. A relationship between the modules (i.e.,
processing steps) can be established. It is possible to visualize these connec-
tions shown in [Figure 2.4; however, the scripts are ultimately stored as RDF
models [83].

3 &

Import kennedys Set initial text

L) text
sm:nbxt
"next

e

[terate over persons
&) lastName &) birthYear (&) firstName

sm:bo

&) birthear G firstName i) lastName

N
&) text -
Append person data
j) text

Return the text

Figure 2.4: An example of SPARQLMotion script visualization [89]

In order to facilitate better understanding of SPARQLMotion, its key
concepts are herein described:

® Script - A script is typically an RDF file in a format composed of modules
that are connected by relations. Every well-formatted SPARQLMotion
script should have at least one module without successors. These modules
are called target modules that can be executed. The SPARQLMotion
script can be saved in any format, and it is composed of triples that
represent the ontology.

B Variable - Modules can also communicate using variables, where the
variable is represented as a name-value pair. The variables can then be

16

2.5. SPipes

used in SPARQL queries or SPARQL expressions. An example of the
variable text can be seen in [Figure 2.4, in the module Set initial text.
This module only initializes text variable, which is later on passed into
another module [terate over persons.

8 Modules - The individual modules can be seen in |[Figure 2.4l Their
behavior depends on a ModuleType and the specific implementation of
the module. The modules can be further interconnected by means of
links. The output of a specific module is used in another module, using
the sm: next binding.

B 25 SPipes

SPipes is an RDF language based on SPARQLMotion language that is
restricted to semantic data flows as an acyclic graph of modules. It’s the
main difference from SPARQLMotion. The modules could be defined in
Java or declaratively in RDF. The only supported serialization format of the
execution is Turtle. The implementation of SPipes language is SPipes engine,
which allows serializing data of the execution into an ontology. The data
could be saved into the files or RDF4j server repository. The example script is
shown in Listing [10 with the explanation is described in the following section:

1. The script contains only one pipeline and one input variable varName
visible on line 16. The pipeline is visualized as a graph on [Figure 2.5

2. The script IRI of the pipeline is defined on line 8 as a owl:Ontology.
Also, the s-pipes-lib is imported, which allow us to use modules such as
sml:BindWithConstant or smil:ApplyConstruct. It is important to note
that both modules are from SPARQLMotion, but as mentioned at the
beginning of the chapter, SPipes is built on top of SPARQLMotion, but
it can not use all its modules. For a complete list of SPARQLMotion
modules, see [88], or SPipes modules[73].

3. Lets move to execution of the pipeline. Every script has to have a least
one sm:Function, which is used as trigger. In our case the :execute-
welcome on line 37.

4. Lets call :execute-welcome and set the input variable varName=Petr via
REST-API (the documentation of the endpoints is in SPipes documen-
tation?)). You need to realize how the script is run and how it actually
works. :erecute-welcome returns rwelcome__Return, which nevertheless
depends on :construct-welcome, which depends on :bind-person-name.
So the script is executed from the end(:welcome__Return) - for a better
visualization, look at [Figure 2.5l It is important to realize that a module
can have more than one input, so we have to build the execution from
the end.

Zhttps://github.com/kbss-cvut /s-pipes

17

© 0 N O U e W N =

_
= o

2. Background

5. Thus :execute-welcome really starts on the module :bind-person-name,
where the output variable sm: outputVariable "personName" with the
value "Petr" is set. This module calls the :construct-welcome module,
which uses the SPARQL CONSTRUCT query to build the resulting
RDEF triplet.

6. The result of the pipeline in RDF format is in Listing |8; however the
SPipes returns result as JSON-LD shown in Listing 9l

I: Input variable
| myName=Petr
L —
| Bind person name |
person=:Petr

‘next _J: welcomeMessage=Petr

- e —
| Construct welcome message |

‘hext is-welcome-by-message="Hello Petr!"

| Return welcome message

Figure 2.5: Hello-world.sms.ttl visualization as a graph

<http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world/Petr>
<http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world/is-welcome-by-message>
"Hello Petr!"

Listing 8: SPipes hello-world.sms.ttl as RDF

{
"@id": "http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world/Petr",
"is-welcome-by-message": "Hello Petr!",
"Qcontext": {
"is-welcome-by-message": {
"@id": "http://onto.fel.cvut.cz/ontologies/s-pipes/hello-worl
d/is-welcome-by-message"
},
"Q@vocab": "http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world/"
}
}

Listing 9: SPipes hello-world.sms.ttl as JSON-LD

18

© 0 N O OR W N

e N S e =
® N O Uk W N = O

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

2.5. SPipes

@prefix : <http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world> .

Q@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sm: <http://topbraid.org/sparqlmotion#> .
@prefix sml: <http://topbraid.org/sparqlmotionlib#> .
@prefix sp: <http://spinrdf.org/sp#>

<http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world>
a owl:Ontology ;
owl:imports <http://onto.fel.cvut.cz/ontologies/s-pipes-1lib> ;

:bind-person-name
a sml:BindWithConstant ;
sm:next :construct-welcome ;
sm:outputVariable "personName" ;
sml:value [sp:varName "myName" ;] ;
rdfs:label "Bind person name" ;

:construct-welcome
a sml:ApplyConstruct ;
sm:next :welcome_Return ;
sml:constructQuery [
a sp:Construct ;
sp:text """
PREFIX : <http://onto.fel.cvut.cz/ontologies/s-pipes/hello-world>
CONSTRUCT {
?person :is-welcome-by-message 7welcomeMessage .

} WHERE {
BIND(iri(concat(str(:), ?personName)) as 7person)
BIND(concat("Hello ", ?personName, "!") as 7welcomeMessage)
}
e)
15

sml:replace true ;
rdfs:label "Construct welcome message"

:execute-welcome
a sm:Function ;
sm:returnModule :welcome_Return ;
rdfs:subClass0f sm:Functions ;

:welcome_Return
a sml:ReturnRDF ;
sml:serialization sml:JSONLD ;
rdfs:label "Return welcome message" ;

Listing 10: SPipes hello-world.sms.ttl example

19

20

Chapter 3
The Original State of the SPipes Editor

In this section, we summarize the original state of the SPipes editor — the
subject of this diploma thesis. The main functionality and supposed applica-
tions of the SPipes editor are presented, together with the official assignment
of the previous work. Next, we discuss the design of the application as well
as the design of its main components and their relationships. The next part
is devoted to a discussion about the suitability of used technologies and made
design choices and its possible shortcomings. We close this section by listing
the bugs and other issues found in this project.

The following section reviews key parts of SPipes editor and summarizes
shortcomings of its implementation.

B 31 Functionality

The SPipes editor is a Scala/React web application that allows the user to
visualize and edit the associated folder with SPipes RDF Turtle(.ttl) scripts.
The SPipes editor identifies functions in the script and subsequently runs
them via SPipes engine.

B 3.1.1 Script Editing

The user interface (UI) of the application is provided by a web page where
users can browse stored scripts and script functions. The script view contains
script layout options and visualization of the acyclic graph of the corre-
sponding script. The layout options (Box, Layered, Radial, etc.) define the
rendering strategy of the graph. The most useful visualisation is often given
by the layered graph, where vertices of the directed graph are represented by
horizontal (vertical) rows or layers, and the edges between them are generally
directed downwards (or from left to right). [52]

The Ul also offers the possibility of editing the graph. It is
possible to edit every individual module (node) and its edges. It is important
to mention that all of these operations could be done directly inside the .ttl
script; however, it is much more convenient to use a graphical interface. Also,
the possibility of any kind of syntactic error is reduced.

21

3. The Original State of the SPipes Editor

The editing consists of two separate operations. The first operation is
related to the module’s relationship. Users can add edges between nodes with
drag and drop or delete edges in a popup context menu. The resolution of
this operation is deletion or creation of the sm:next property between two
modules.

The second operation is editing the module (node) parameters via the
module context menu and SForms [] 3.2b. Based on the module type,
the SForms framework is used to provide a form for editing of this module. It
should be noted that the module type cannot be changed. The workaround
is to create a new module with a new type and delete the old one. Later on,
the edges can be added.

Add module type - Duplicate
Fixed

Box

Layered

Stress

Mr. Tree

Radial
Force

Bind person name222 Construct greetingzReturn greeding statement

© Yan Doroshenko & KBSS FEL CVUT v Praze, 2018 Version: Dev

Figure 3.1: Original SPipes editor

module type -

execute-greeding x| v

(a) : Module editing actions (b) : Module form detail

Figure 3.2: Script editing

"https://github.com /kbss-cvut /s-forms

22

3.2. Implementation of the SPipes Editor

B 3.1.2 Notifications

SPipes editor notifies the users by a popup window when a script is edited
or deleted. Detail of the notification message is in [Figure 3.3.. This allows
multiple users to edit one script at the same time. The notification appears
even in the case the change is made directly in a script file. The notification
only informs about the change event without providing detail and offers users
to reload the script page.

Figure 3.3: Notification message

B 3.1.3 Script Execution

Scripts that contain a function can be browsed on the function page. The
function is defined as an instance of type sm:Function described in
All the functions that are defined in scripts containing suffix sms.ttl are listed
in the drop-down menu and they can be called by setting up parameters
through SForm form. The execution is possible in detailed view of the .t
script and is done by a REST-API call. The outcome of the execution is,
however, not visualized in the editor.

Add module type h

]

htp:fionto.fel.cvut.cz/ontologies/s-
pipesthello-world-cxample-
0.1 greeding

2]

Bind person name

execute-greeding

O execute-greeding

Return greeding statement

Construct greeting

(a) : Select function to execute (b) : Execute function detail

Figure 3.4: Script execution

B 32 Implementation of the SPipes Editor

As was already stated, the SPipes editor is a standard web application
and hence composed of the backend and the frontend part. The backend is
implemented in Scala as the primary programming language, and Java uses the
Spring framework and provides a REST-API and WebSocket communication
with the frontend. REST-API(RESTful API in web communication) is an

23

3. The Original State of the SPipes Editor

architectural style for an application program interface that uses HTTP
requests to access and use data[71]. WebSocket is a computer communication
protocol that provides a full-duplex (two-way) communication channel over a
single TCP connection[I00]. Also backend side communicates with SPipes
engine, which executes SPipes scripts. The frontend side is built on React [69]
library and provides means of visualization of the application.

The high level deployment diagram of the application is shown in [Figure 3.5.

SPipes editor frontend

FY

Interface for editor

SPipes editor backend

Execute| scripts

b

SPipes engine

Figure 3.5: High level deployment diagram

B 3.2.1 SPipes Editor Backend

The design follows the Model-View-Controller (MVC) pattern [59] which is
the recommended [60] use of the Spring framework. However, the use of
Scala slightly directs the overall shape of the design of the whole backend
application. This problem is described in detail in section 3.5l

The Model layer of the application is the only part of the application which
is written in Java. The necessity comes from the dependency on the library
JOPA (Java OWL Persistence APT) which provides object access to ontologies,
similarly as ORM frameworks provide an interface to relational database
objects. The library is explained in detail in [Figure 6.2.1. The functionality
is essential for the project and JOPA is one of the leading libraries providing
it. Further Model layer communicate via REST-API with SPipes engine.

The Controller layer provides data for the React application and receives
data. In most cases the format used for communication is JSON-LD to unite
with the Semantic Web domain.

The View layer was originally part of the application and was designed to be
run together with the backend on one server. As the communication between
layers is performed by REST-API calls, this will be moved to a separate
project. It will facilitate greater flexibility and lead to better separation of
concerns [57].

Unfortunately, the use of Scala is difficult due to interoperability problems

24

3.3. Tests

between Java and Scala. As Spring framework also suffers from compatibility
issues with Scala, this led to the decision to rewrite the whole application
to Java. The Scala-related challenges are described and discussed in greater
detail in [section 3.5l

B 3.2.2 SPipes Editor Frontend

As was already stated in [subsection 3.1.1] frontend part of the application is
interface for the script editing and execution builded on javascript framework -
React. The front-end part communicates with the back-end part and handles
rendering components such as a .ttl script list or a list of functions. However,
it also takes care of rendering, editing the graph using SForms, and notifying
the user of a script change on the File System.

Rendering is solved using the React component library The Graph Editor
2, which is described in more detail in the section 4.3, This library provides
visualization and editing of node-based graphs. It is essential for the ap-
plication, and the individual requirements for the library are described in
the subsection 4.3.4l Unfortunately, the library does not meet some of the
conditions and will therefore be replaced in the future.

Another essential component is the SForms library, which provides forms
for editing SPipes modules. The library is explained in subsection 6.2.2 The
main advantage of SForms is the automatic rendering of the form based on
JSON-LD data. The last important part of the application is the WebSocket
client, which receives messages about changes in scripts on the File System.

. 3.3 Tests

As admitted in the bachelor thesis which dealt with the original SPipes editor
[104], automated tests were not done properly due to time pressure. Some
manual testing was performed; however, manual approach is only sufficient
for demo projects. A problematic aspect of manual testing is that the tests
are not carried as a repeatable part of code. Furthermore, the tests should
serve as holders of the component behavior, thereby allowing programmers
to better understand the code. This deficiency of tests is fully described in
following chapter.

B 3.3.1 Backend Tests

The application backend contains, as already emphasized, only a limited
number of tests. These tests are not, in the majority cases, related to the
code itself. Meaning, while many of these tests monitor the behavior of used
libraries, they do not test the code (i.e., classes and its method) used in the
project. This absence of sufficient testing of the code is highly impractical as
it does not verify the application functionality.

Zhttps://github.com/flowhub/the-graph

25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

3. The Original State of the SPipes Editor

The only part of the application backend which seems to be tested is services.
However, the content of these tests is rather incomprehensible. The content
of some of these tests is only mocked, which only increases code coverage
but does not bring any benefits. As we can see in Listing [11] the createFile
method create instance of File class and create new empty file on file system.
Nonetheless f.createNewFile() is part of standard library which expect to be
working. Also, the assertion should be part of the test [47]. Another example
of an unnecessary test is jenaTest, which calls a third-party library and does
not assert anything. This type of test is essentially unnecessary and should
be removed from the application. An example of this inadequate code is in
Lisitng 11}

Q@Test
def createFile: Unit = {
val script = getClass().getClassLoader() .getResource("scripts/")
.getFile()
val f = new File(script + "test")
f.createNewFile()
println(f.getAbsolutePath())
}

QTest
def jenaTest: Unit = {
val ml = ModelFactory.createDefaultModel()
ml.add(
ResourceFactory.createResource("http://uri.org/si"),
ResourceFactory.createProperty("http://uri.org/p"),
ResourceFactory.createResource("http://uri.org/ol1")
)
val m2 = ModelFactory.createDefaultModel ()
m2.add(
ResourceFactory.createResource("http://uri.org/s2"),
ResourceFactory.createProperty("http://uri.org/p"),
ResourceFactory.createResource("http://uri.org/o02")
)
val union = ml.union(m2)

union.listStatements()

Listing 11: OntologyHelperTest.scala from s-pipes-editor®

Other main parts of the backend (model and controller), do not contain any
tests. In general, the lack of testing makes applications extremely vulnerable
to errors. For example, the edition of a specific node is done via REST-API
and this edition had to work during the testing. Nevertheless, further project
adjusting had to corrupt this operation. It could be easily prevented if the
endpoint, which is responsible for the update operation, would be tested.

26

3.4. Design Related Issues and Bugs in the SPipes Editor

The same argument could be used for every other endpoint. Also, this test
could serve as documentation of the endpoints. The absence of dynamically
generated documentation of the REST-API such as Swagger and typeless
endpoints does not provide any information about what is provided by the
application.

Lastly, the reason for this unsatisfactory state is not caring about the tests
from the beginning of development. The third-party libraries could be simply
wrapped and later on mocked. The actual situation is much more complicated
because it is very hard to satisfy all the actual dependencies.

B 3.3.2 Frontend Tests

Automated tests of the frontend part of the application were not established.
This section was tested only manually. It means the manual testing of the
scenario is required over and over again. Concrete scenarios based on the most
common graph manipulations are already defined in the thesis. However,
it would be highly convenient for the project if these kinds of tests were
automated. For example, a Selenium framework could be used.

B 34 Design Related Issues and Bugs in the SPipes
Editor

In this section, we explain issues related to the design of the application,
which was described in [section 3.2, Some of the components suffer from the
problematic design, which could cause unexpected behavior of the program.
Further, some of the discovered bugs with explanation are listed.

B 3.4.1 Design Issues

In this section, parts of the whole SPipes editor design and its individual
components which have been evaluated as problematic are described.

B Synchronization and Transaction Problem

Although the SPipes editor allows editing of the .ttl scripts for several users,
it does not handle the atomicity of individual operations. This issue concerns
both reading and writing of the files. This can lead to a race condition - it is
an error in a system or process in which the results are unpredictable with
the wrong order or timing of its operations. For example, by deleting a node
in thread A and editing it in thread B in the same file. Even though thread
A deletes the node, thread B may not notice the change and write the node
to the file again.

27

10

11

12

13

14

3. The Original State of the SPipes Editor

B Changes in Edited Files Notifications

Changes in files are monitored by a NotificationController.scala (NC), which
is tied to consumers by a session. Consumers are notified of the change via a
web socket. It is important to mention that the name of the component is
rather misleading. As it only takes care of notifications when changes appear
on the filesystem a different name (e.g., FileSystemNotificationControler.scala)
would be more accurate.

Another issue with the notifications is that the notify function is incorrectly
called in several places in the code. These calls are unnecessary as the root
directory with all the files is already monitored using NC. These redundant
function calls can result in creation of an erroneous notification or two
identical notifications, as you can see in Listing [12. The critical section
of the code is NotificationController.notify(scriptPath). This call is not
necessary because files are already monitored. To avoid this issue, the
NotificationController.notify(scriptPath) method should be private or private
to the package.

The last problem with the notification component is the management of
sessions that receive notifications. The management of sessions is done via
Java HashMap in which the file absolute path is the key and the list of sessions
are values. However, Java HashMap has no synchronization mechanism. One
of the race condition examples is the register method is in Listing [13l If two
messages for the same file come at the same moment, it is not guaranteed that
both of them would be saved. Therefore, when NC interacts with multiple
users, the behavior may not be correct.

def deleteModule(scriptPath: String, module: String): Try[_] = {
log.info(f"""Deleting module $module from $scriptPath""")
helper.getFileDefiningSubject (module) (new File(scriptPath)) match {
case Success(file) =>
val m = ModelFactory.createDefaultModel() .read(file)
m.removeAll (m.getResource(module), null, null)
m.removeAll (null, null, m.getResource(module))
cleanly(new FileOutputStream(file)) (_.close()) (os => {
m.write(os, FileUtils.langTurtle)
»
.map(_ => NotificationController.notify(scriptPath))

case f => f

Listing 12: deleteModule method from s-pipes-editor*

28

13

14

15

3.4. Design Related Issues and Bugs in the SPipes Editor

@0nMessage
def register(script: String, session: Session): Unit = {
Try {
log.info("Session " + session + " registered on " + script)
if (NotificationController.subscribers.keySet.contains(script))
NotificationController.subscribers(script) = NotificationController
.subscribers(script) + session
else
NotificationController.subscribers(script) = Set(session)
} match {
case Failure(e) =>
log.warn(e.getLocalizedMessage(), e.getStackTrace() .mkString("\n"))

case _ => ()

Listing 13: register method from s-pipes-editor

B Direct Manipulation with File System

Another problematic part is direct manipulation with the file system which
is not in line with ACID (atomicity, consistency, isolation, and durability)
principles. Implementation of a mediator, so the file system handling would
not be direct, could ensure some of these principles.

B 3.42 Bugs

Several bugs were discovered in the current implementation of the application.
Namely:

8 Update of modules whose output is not used by other modules does not
work entirely. The server returns Internal server error (500) and the
frontend does not notify the user about the error. The detail of the error
in the application log is the Null pointer exception.

® Update of the configuration module corrupts the .ttl script which is not
valid anymore. Websocket notifies users about the change in the File
System; however, after the reloading of the script, the application notifies
the user about server Internal server error (500). The analysis of the
corrupted script is complicated, because the result is an extremely long
file (around 4.5k lines) which is immensely hard to analyze.

® Adding an edge works correctly but it allows the user to create a cycle.
However, the SPipes requirements do not allow cycles. It could be easily
prevented on the JS side of the application. The Graph library allows
cycle detection, thus cycle creation could be easily prevented.

29

3. The Original State of the SPipes Editor

#® Adding a new module works as expected from the frontend perspective.
However, the owl:import property is not longer in the script and the
script can not be longer loaded.

® Execution of any function returns Internal server error (500) even if
SPipes engine running as described in [subsection 3.1.3.

B 3.5 Problems Related to the Scala Language

In this section, Java and Scala languages in detail to be able to understand
their interoperability. Further, the Scala with the Spring framework is
described because Scala language is not supported by Spring framework
officially. Finally, the last part of the section describes related issues to
SPipes editor.

B 35.1 Java

Sun Microsystems created the Java programming language at the beginning
of the 1990s and nowadays, it is one of the most used programming languages
in the world [7]. While it is used mainly for Internet applications, Java
is a simple, efficient, general-purpose, portable language. Following the
“Write Once, Run Anywhere” (WORA) paradigm [6], Java applications are
typically compiled to Java bytecode that can run on any JVM regardless of
the underlying computer architecture. Thus, the same Java program will run
on any platform, irrespective of hardware or operating system, provided it
has a Java interpreter.

As Java is largely derived from C++, its syntax does not largely differ
from C/C++ syntaxes. Java is class-based object-oriented language, thus
all data structures are represented as java objects. However, Java cannot
be considered to be purely object oriented as it has predefined types as non-
objects (primitive types such as integers, floating points numbers, boolean
values, and characters) [18]. Unlike C++, Java does not contain pointers and
operator overloading (operator ad hoc polymorphism) and multiple inheritance
is not enabled. However, definition and implementation of interfaces (i.e.
collection of abstract methods) by classes is possible, thus, in some sense, a
certain level of multiple inheritance can be achieved. As Java is a statically-
typed programming language, prior declaration of the variable data type is
necessary.

B 3.5.2 Scala

Scala is a modern multi-paradigm general purpose programming language
which combines features known from functional languages such as Haskell,
or Standard ML with object oriented programming. Scala was designed by
Martin Odersky from Ecole polytechnique fédérale de Lausanne and was first
released in 2003 [17] Many of Scala’s architecture design choices were made

30

3.5. Problems Related to the Scala Language

such that it is concise while maintaining readability [48] and were intended
to counter critique of Java.

As described in Tour of Scala [39], unlike Java, Scala is a pure object-
oriented language in the sense that every value is an object. Objects are
defined by classes and traits. Multiple inheritance is in Scala replaced by
subclassing and using a flexible mixin-based composition mechanism. Same
as Java, Scala implements singleton classes, i.e., classes that can only have
one object (one instance of the class) at a time, which provides a convenient
way to group functions that are not members of a class.

As mentioned previously, Scala is also a functional language in the sense
that every function is a value [39]. Using a lightweight syntax, definition
of anonymous functions and higher-order functions is enabled. Nesting of
functions and currying (i.e., methods with multi-parameter lists) is also
supported. Scala provides the functionality of algebraic types, used in many
functional languages, by case classes and their built-in support for pattern
matching. General extension of pattern matching using extractor objects
then facilitates processing of XML data, thus making Scala highly suitable
for web services applications.

Scala is a statically typed language as Java. Scala type system supports
generic classes, variance annotations, upper and lower type bounds, inner
classes and abstract type members as object members, compound types,
explicitly typed self references, implicit parameters and conversions, and
polymorphic methods.

The name Scala comes from the words scalable and language [55]. Thus,
the name itself suggests that the language is extensible and provides a
straightforward way of implementing new custom language constructs in the
form of libraries.

Scala code compiles to the same bytecode as Java, and therefore runs on
the Java Virtual Machine (JVM). Scala libraries can be referenced directly
from Java [28]. This makes it easier to work with these languages. It also
supports multiple inheritance, interfaces, virtual functions, and generic types.
The main benefits of Scala over Java include: operator overloading, optional
parameters, named parameters, and raw strings. Moreover, Scala allows the
use of checked exceptions.

Bl 3.5.3 Interoperability between Scala and Java

As previously mentioned, one of the most notable features of Scala is that
it runs on the JVM, which brings many benefits in the form of easy use of
Java’s rich ecosystem with a lot of development frameworks and software [94].
As the compiled bytecode runs on the JVM regardless of the language that
was used to produce it, the integration of Java libraries into Scala and vice
versa is, in the majority of cases, smooth.

However, some corner cases are known [38] in which issues may arise when
using Java code with Scala or vice versa. It is thus important to keep in
mind that these languages are not equal. For example, Java does not have an
equivalent for Scala’s trait which is, on the other hand, distinct from Java’s

31

3. The Original State of the SPipes Editor

interface. Interface and trait have many similarities; however scala interface
allows implement members.

The full list of interoperability problems is not officially known and as they
come from fundamental differences between the two languages, they tend to
manifest themselves in various ways. Let’s see which issues can arise when
using a ScalaTrait in a Java code. Suppose we have a Scala trait declaring
some function foo and a Java class that implements it in Listing |14l

//Scala code
trait ScalaTrait {
def foo = {}

//Java code
class JavaClass implements ScalaTrait {

}

Listing 14: ScalaTrain implements in Java

As one can see, this leads to an error. Java complains that ScalaTrait is
not an abstract class and it can not override the foo() abstract method in
ScalaTrait. However, ScalaTrait is compiled to Java bytecode, so where is
the problem? The key to this question is to understand how the compiled
code looks. The equivalent for ScalaTrait is shown in Listing |15

public interface ScalaTrait {
public void foo();
}

public class ScalaTrait$class {
public static void foo(ScalaTrait self) {}
}

Listing 15: ScalaTrain implements in Java

ScalaTrait is compiled to theScalaTrait interface from the Java perspective.
Therefore, ScalaTrait is interpreted in Java as an interface - which explains
the inability to of Java to interpret the ScalaTrain as an abstract class.

Some other problems such as primitive values, objects in collection or
primitive types are described in detail in Java interoperability: Kotlin vs
Scala [42].

B 3.5.4 Scala with the Spring framework

As mentioned previously, the Spring framework is a Java platform. Un-
fortunately, Spring does not have any official Scala support and the only

32

3.5. Problems Related to the Scala Language

community developed project Spring Scala®|is no longer maintained (the last
commit was on October 03, 2015).

However, thanks to the mentioned interoperability between Scala and Java,
the Java Spring Framework is usable in Scala as well. Although its application
is possible, the differences between the two languages, as outlined in previous
chapters, may cause various issues. Alvin Alexander, for example, pointed
out quite problematic casting of objects from the Spring application context
to Scala [2].

The analysis revealed a number of other issues that, especially due to
the lack of official documentation, is time consuming to address. A good
practical example can be found in the article Basic Spring web application
in Java, Kotlin and Scala - comparison [84] by Radostaw Skupnik. In this
project, a simple Spring Boot app’| was developed using Java and alternative
JVM languages (Scala and Kotlin) and the approaches have been further
compared. The comparison revealed several problematic factors when using
Scala to create a simple Model-View-Controller (MVC) application with a
trivial Entity, Repository and Controllers. For example, in the Entity class
when using the Scala case clas®, it is necessary to use scala.meta.anotation”
so that the code can work.

Bl 3.5.5 Issues in Implementation with Spring Framework and
SPipes Editor

In this section, let us briefly describe the Scala-related problems on the
backend side of the application. As already mentioned, Spring framework
does not have native Scala support which causes an obligation to mix up
Scala and Java code in SPipes editor. Some of the issues are:

8 Avoiding return types - Controller layer is avoiding return types.
Even if the DTO is created in Java, the REST endpoint is unable to
match it. It makes code incomprehensible and breaks type convention.
One of the common approaches to handling exceptions [9] is not working
due to the use of Scala.

® Mixing Java and Scala Collections - In most cases projects use
Java libraries for working with ontologies. These libraries return Java
Collections which are later on casted to Scala collections for more conve-
nient work in application. However, to return a response via REST-API,
Spring requires a Java collection. This problem manifests itself in many
places in the code for Example in ViewService!'V: load data wrapped in
Java collection, cast them to Scala collection and cast them again to
Java collection without any other use in application.

Shttps://hub.darcs.net/psnively /spring-scala
"https://github.com /rskupnik /pet-clinic-jvm
Shttps://docs.scala-lang.org/tour/case-classes.html
“https://www.scala-lang.org/api/2.12.0/scala/annotation /meta/index.html
Ohttps://bit.ly/3xgIOKR

33

3. The Original State of the SPipes Editor

® Specific libraries for projects - such as JOPA vocabulary, Jena Ont-
DocumentManager cache, and Scala collection wrappers require specific
solutions in Scala or implementation in Java to avoid compatibility issues.

® Mutability - Scala preferable implementation way are immutable objects
and data structures. The immutable objects avoid failures on distributed
networks and have thread-safe results. Nevertheless, language still allows
the use of mutable objects if they are required.

8 Exception Handling - Handling of exceptions can also be problematic
in case we try to combine Scala with the Spring framework (as described in
the |subsection 3.5.4). The core of the problem lies in different approaches
to exception handling in Scala and Spring. Scala does not require to
treat the exception. However, the Spring framework expects the same
exception handling as in Java. It means we have to handle every error
instead of using fundamental functionality for exception handling by
Spring.

B 36 Summary of the SPipes Editor Original State

The application contains several critical bugs that make it practically impos-
sible to use as described in |subsection 3.4.2. The script visualization works
fine; however, critical errors occur during its editing which damages the script.
After that, it is no longer possible to edit it. Combined with unpacking the
imports into a given script, it is then virtually impossible to detect the error.
This brings us to another very problematic part, and that is the unpacking of
imports. This problem makes it very difficult to work further with the script,
even though the script is still readable from the machine’s point of view. For
a human, it is impossible to spot an error.

Unfortunately, script execution doesn’t work at all. REST endpoints were
provided nevertheless the implementation is not working. SPipes editor
requires a running instance of the SPipes engine. Even though the engine
is running the script is not executed. Also the possibility of getting results
from the execution is not implemented.

I assume that a large part of the application worked during development.
Unfortunately, the adding of new features damaged existing functionality. This
could be prevented if tests are added from the beginning of the development
as stated in [subsection 3.3.1] At this stage, it is very complicated to edit
existing code or even add new features. The developer does not know if
everything is working correctly. Also, the synchronization topic is overlooked
subsubsection 3.4.1. The absence of this topic could cause serious errors in
further development.

The last problematic part is the use of Scala as described in |[section 3.5.
With the combination of the Spring framework, it is not possible to use the full
potential of any technology. Scala does not enable types of endpoints, creating
a model layer must be written in Java, complicate dependency injection and,

34

3.6. Summary of the SPipes Editor Original State

last but not least, handle exceptions by REST-API endpoints. In addition,
key libraries such as Jopa OWL annotation can not suffice to work with Scala.

Despite the fact, part of the SPipes editor functions are not working applica-
tion is very well designed. Script module editing via SForms is fundamentally
correct. It is working as expected in some cases—unfortunately, the absence
of tests very complicated refactoring and understanding the application. In
other parts of the application, notifications working as expected in most cases,
but the synchronization is not handled correctly. The execution of the script
is also well designed, but the implementation is not working.

As an outcome of this analysis, we do not use Scala in further development
because it brings more negatives than positives. Also, the tests of the
application have to be implemented. The frontend part of the application
will be separated from the core of the application to decrease coupling.

35

36

Chapter 4

Review of related technologies

This chapter reviews the available graph-based RDF visualization tools and
summarizes the visualization technologies. Further, it describes data pipeline
editors and compares the visualization libraries and SHACL validation engines.

B a1 Graph-based RDF visualization tools

This section analyses tools capable of visualization of RDF triples via graph
shown in [Figure 4.1, The aim is to provide a comprehensive overview of
available graphic libraries and identify their features and limitations. Herein,
only the most crucial part of the libraries - visualization of RDF data as
graphs, is described, but other essential features like graph editing, nodes
collapsing, and license could be mentioned. The visualization part is a crucial
part of the editor; hence the analysis is needed.

B 4.1.1 Visualization tools

This section briefly describes the majority of the tools that can visualize RDF
data. The timeline showing the development of tools for linked data can be

seen in [Figure 4.1,

® CytoScape - Cytoscape is an aggregation, interpretation, and visualiza-
tion platform for data networks. Several extensions on the App Store in
CytoScape, such as SemScapeE| and Vital AI Graph Visualizatiomﬂ7
support Semantic web technologies like RDF[78]. The used graphical
library for the visualization is Cytoscape.js[27] with an MIT license.

8 Fenfire - Fenfire was an instrument for displaying and modifying RDF
graphs to explore the graph interactively. However, the project is no
longer active and it does not use any specific library for visualization[33].

8 Gephi - Although Gephi has been developed to reflect semantic networks,
it also works with different networks and other types of graphs. Exter-

Thttp://apps.cytoscape.org/apps/semscape
2http: //apps.cytoscape.org/apps/vitalaigraphvisualization

37

4. Review of related technologies

o RDF Linked OWL 2 RDF *
[ROF Sche
owL SPARQL Data SPARQL 1.1 o Schema 1.1 (19
Tabulator Faceted Explorer tFacet)
< E BrowseRDF URIBurner vieor ! Ph::zvyblénk
2 f Explorat 2
& Haystack e P Marbles Sewelis RDFSurveyor
29 Noadster Disco " Tf”‘e‘ Sparklis
= Flamenco mSpace LENA "'Sls‘:mlfss SemFacet
o & Piggy Bank Humboldt Faceted Wik X-ENS PepeSearch Grafa
VisU Dbpedia
Who's Who sextant %t Catla
Payola
MapaRDF LDCE SR
DBpedia Mobile CubeViz OpenCube
LinkedGeoData Spacetime
Balloon Synopsis
Vis Wizard 0N
SynopsViz
Rhizomer LODWheel LOVizWiz Elinda
VizBoard SEmiens Lovm LinkDaViz LPVA
Payola VicoMap 3
t y t + t + t + + + >
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
LinkedOpenGraph
-— S SparalFilterFlow Lo VizloD
saviz PGV Fenfire LoDex LOG LODVader GIG
-1 5| ROF Graph Visualizer i
98 ShE RelFinder - LOD/VizSuite H-BOLD
8 = RDF-Gravity Floxviz ive EKL%T)SS . Wisp
i £ ZoomROF Lobdkesl i Graphless
E. § 3 QueryVOWL Tarsier
& Cytospace RDF4U
[yios: CETED OSMOSYS ¢ Graph
RelClus rap
LoDsight
ResXplorer)
graphVizdb
Multi-View Ont Vis
TGVizTab OntoSphere @ Near Ve Cotol WebvowL
Triple20 et it OWLeasyViz Kevie .
OntoViz ProtégéVoWL
COE OntoStudio
Jambalaya RDFDigest+
OntoTrack NavigOWL
OntoRama Visual Onto Modeler ROFDigest
Glow
. GraphOnto @R Ontodia
Protégé Entity Flexviz SOVA
v CropCircles Knoocks)
OoWLViz OWLPropViz Onto3bViz

OntoGraf

Figure 4.1: Linked Data Visualization Tools Timeline [3]

nal plugins include SemanticWebImporiﬂ and VirtuosoImportetﬂ
support RDF representation. Unfortunately, Gephi is written in Java
which handles the visualization[IT]. It implies that no specific library is
used.

® IsaViz - IsaViz is a Java application for creating RDF data models.
Data can be browsed and exported/imported in many different formats,
including RDF[41]. However, its development is no longer active as the
last version was published in 2007.

® LodLive - LodLive project offers browsing RDF data in a very user-
friendly web-based GUI. This tool aims to prove how simple under-
standing robust Semantic Web standards can be and it promotes the
spread of massive data. Any LOD Live resource is surrounded by a series
of symbols which are various forms of relationships between nodes[19].
LodLive uses a jQuery plugin lodlive—core.jﬂ7 and the project is under
MIT license.

® RelFinder - RelFinder provides an overview of RDF data. It allows
extractions, visualization, and interactive exploration of links among
provided objects in RDF data[34]. Library is part of Java Visual Data

3https://github.com/gephi/gephi/wiki/SemanticWebImport
“https://github.com /avens19/virtuosoimporter
Shttps://github.com/LodLive/LodLive

38

4.1. Graph-based RDF visualization tools

Web glt'oupﬁ7 which is no longer developed.

8 WebVOWL - WebVOWL is a web framework, which enables to display
ontologies interactively. It implements the OWL Ontologies (VOWL)
visual notation by supplying graphical representations of OWL compo-
nents combined with a force-driven ontology graph structure. Interaction
techniques allow exploration of ontology and simulation to be adapted[54].
VOWL uses its own implementation built on D3.js, which is under BSD
license.

8 Protégé - Protégé provides two solutions - Desktop Java-based Protégé
Desktop and WebProtégé for the Web, which is more convenient for
ontology editing[58]. Both solutions support editing of the ontologies.
Desktop visualization allows adding or deleting the relations among the
nodes, but no specific visualization library is used.

Matrix p17 A A .
® \ °
PPP2RSD ENV_HV1HZ
o \ o

|\, g F-PrOtEIn res GAG_HV1H2

/PSMDT\ - DS .

. / \ CHEK1
o |\ N\ 2

Prolea:

Capsid p24

N\ _coke |

[| APOBEC3G
Surface gp120/

y POL_HV1H2
o Transmembrane gp41

. Nucleocapsid p7
: P51 RT . @

Figure 4.2: CytoScape visualization example [21]

B 4.1.2 Graph database

A graph database is a database designed to handle data relations as essential
as the data themselves[I4]. Data could be handled without being limited
by the predefined model. Instead, the data is stored as we first draw it -
demonstrating how every single object relates or is connected to another
object.

Graph databases typically allow browsing data via queries that return text
represented results such as JSON[99]. Graphical representation is not so

Shttps://github.com/VisualDataWeb

39

4. Review of related technologies

common, but some of the graph databases provide the possibility of graph
visualizations. This section analyses only the databases with the graphic
visualization option, so it tries to find used visualization libraries.

® ArangoDB - ArangoDB is an open-source(Apache License 2.0) multi-
model database supporting three models of data (graph, document, and
key-value data models), enabling users to freely integrate all data mod-
els in a single query (ArangoDB Query Language, AQL). Integrating
multiple NoSQL types into a single infrastructure using a multi-model
database will simplify your architecture. The query language is declara-
tive, allowing various data access patterns to be merged in a single query.
While ArangoDB is a NoSQL database, AQL is similar to SQL in many
ways[b]. ArangoDB has several options in the area of graph javascript
visualization. The most used ones are D3.js and Sigma.js.

® DGraph - Dgraph is a GraphQL [31] database with a graph runtime
that is horizontally scalable and distributed under Apache 2.0 license.
Dgraph is designed to handle the high-volume transactional workloads
demanded by today’s apps and websites, but it is not exclusive to
them. It is used for application backend, search engine, or only for
data analysis [24]. DGraph develops its own web visualizer and cluster
manager Ratel’, which uses D3.js for graph visualization.

® Neo4j - Neodj (Network Exploration and Optimization for Java) is a
graph database with native graph data structure and processing under
GPL v3 license. It is a high-performance graph store with all of
the functionality expected from a mature database, such as a primary
query language and ACID (atomicity, consistency, isolation, durability)
transactions [99]. The Neo4j offers two embeddable libraries Neovis.js
built on Vis.js, and Popoto.js make on D3.js.

#8 JanusGraph - JanusGraph is an open-source, scalable graph database
that is customized for work over giant data sets containing billions
of nodes and edges. It is licensed under the Apache 2.0 License.
JanusGraph allows graph data to be distributed to a multi-node cluster
as the usual chart database supports competitive transactions and the
creation of custom indexes [80]. JanusGraph works with a variety of
storage backends (Apache Cassandra, Google Cloud Bigtable, Scylla,
etc...). JanusGraph supports Cytoscape.js and other visualization
applications.

® RDF4J - RDF4J is a robust Java framework for handling of RDF
data. The functionality of the database is extensive from comprises RDF
and Linked Data creation, parsing, reasoning, querying, and others. It
comes with a simple API that connects to all meaningful RDF database
solutions. It enables you to connect to SPARQL endpoints with the

"https://github.com/dgraph-io/ratel

40

4.1. Graph-based RDF visualization tools

repository and build an application that takes advantage of linked data
and the Semantic Web|[23].

I 4.1.3 Standalone solutions for data visualization

This chapter focuses on general solutions for data visualization. Graphical
visualization tools are an essential and unique source of insights into results.
In recent years, researchers in some of the most creative firms worldwide have
explored graphic techniques to achieve a more detailed data view [I5]. Some
of these tools are presented here in order to get insight into which libraries
are used for visualization.

® yFiles - yFiles from yWorks® company is a programming library for
free and commercial usage specifically built for diagram visualization. It
is a perfect match for the complexities of graph database visualization.
yFiles advanced architecture algorithms can efficiently turn data into
a readable and informative network. The visualization is provided by
desktop application yed®| or website application yed-livd'’[T03]. Both
applications use private visualization libraries.

® KeyLines - Cambridge Intelligence'! offers two commercial libraries -
javascript library KeyLines and ReGraph, which allow the use Key-
Lines for React developers. Both of the libraries provide a powerful API
for developers and offer very well documentation. The library used for
the visualization is private.

® GraphXR - GraphXR a visual analytics platform from KINEVIZ!
company that gives anybody working with linked, high-dimensional, and
big data unparalleled speed, control, and fluidity to explore the graph
data in both 2D and XR. GraphXR visualizes data as nodes bound by
edges in a graphical 3D graph space and offers a powerful range of tools
for exploring and modifying them. The technology used for visualization
is Java-based private solution.

8 GRAPHLYTIC - Graphlytic is a web framework for graph visualiza-
tion, interpretation, and automation that can be customized. The usage
of Graphlytic has a variety of purposes, including code refactoring, spam
prevention, communication visualization, process analysis, and modeling
of IT infrastructure. The library is built on Cytoscape.js[30].

B 4.1.4 Summary

As we can see in [Figure 4.1], graph-based visualization tools are still under
development; however, they do not get so much interest as Graph databases

Shttps://www.yworks.com/

“https:/ /www.yworks.com/products/yed
Phttps: //www.yworks.com/yed-live/
"https://cambridge-intelligence.com /keylines/
2https://www.kineviz.com/

41

4. Review of related technologies

or standalone data visualization solutions. Many of the libraries are no longer
developed, such as IsaViz, Fenfire, and RelFinder.

The problem of tools designed specifically for use on RDF data is, at the
same time, its main feature - the specialization solely on RDF data. Contrary
to this, the problem with the solution only for RDF visualization such as
WebVOWL is the concretization only on RDF data. In contrast, CytoScape
is more general and solves another range of problems for which it provides
visualization. Visualization in CytoScape for RDF-based data is solved using
the RDFScsape plugin'.

Modern graph databases can often work with RDF-based data and then
visualize them using visualization plugins. For example, Neo4j can consume
RDF data and then visualize and browse it very well. All the above-mentioned
graphic libraries have the possibility of high-level visualization, as mentioned
in subsection 4.1.2. However, compared to RDF-based visualization tools,
Graph databases are more general and RDF-based, and their visualization is
only a small part of their whole functionality. Standalone solutions for data
visualization focus on general data analysis and possibly their visualization.
However, these solutions are often paid for, and visualization is part of the
know-how. As shown in [Table 4.1] the most used library for visualization is
D3.js, Java-based, and Cytoscape.js, where D3.js and Cytoscape.js offer
great visualization options and are in addition OpenSource.

Framework Visualization Graph database Sta'ndalone i #
tools lutions
Cytoscape.js | CytoScape JanusGraph GRAPHLYTIC | 3
lodlive- LodLive 1
core.js
Neod4j, DGraph,
D3.js WebVOWL ArangoDB, 5
RDF4J
Protégé,
Java-based RelFinder, 4
IsaViz, Gephi
Vis.js Neo4j
KeyLine ReGraph

Table 4.1: Visualization libraries usage in Visualization tools, Graph database,
and Standalone solutions

B 42 Data pipeline editors

This section briefly describes existing solutions of data pipeline editors. The
used technology and main features are presented.

3https://apps.cytoscape.org/apps/rdfscsape

42

4.3. Visualization libraries

8 LinkedPipes ETL - LinkedPipes ETL is actively developed RDF-
based, lightweight ETL tool under MIT licence. The tool is composed
of REST-API backend and frontend. Both of the components could
be built separately, where the backend provides REST-API. It means
everyone can create their Ul It is important to mention that the project

offers a demo application™|

The LinkedPipes allows creation of a custom pipeline, where the pipeline
is defined as data transformation operations compounded from the
modules. The pipelines can be executed and the result downloaded.
Also, significant part is the editor, which allows users to create or adjust
the existing pipelines. A different variety of features is provided, such as
personalizing the Ul, pipeline import, or debugging of the pipeline. The
UI uses the JointJ4'®| visualization library.

8 UnifiedViews - UnifiedViews offers an editor for managing, debugging,
and monitoring ETL pipelines. UnifiedViews is one of the base part of
Open Data Node - a publishing platform for Open data. This platform
provides extraction, transformation, and publishing open data[50]. The
modules of the pipelines are called DPU, which allows load RDF data
from the database or call SPARQL query. Unfortunately, the editor is
no longer being developed.

® TopBraid Composer - TopBraid Composer is a commercial tool from
TopQuadrant company. The application is distributed as a Java-based
desktop application which allows working with ontologies and RDF data.
The tool is primarily oriented to RDF-based data; however, it can work
with XML and XML Schemas, JSON, Spreadsheets, and much more.
Additional functionality enables the user to create SHACL constraints,
read /write by GraphQL, create SPIN constraints, and most importantly,
SPARQLMotion scripting language, which is the base for the SPipes
language. The TopQuadrant offers paid solution TopBraid Composer
Maestro Edition with advanced features and a free version which has a
limited scope of functions [90].

As can be seen from the list of editors, only LinkedPipes ETL and TopBraid
Composer are actively being developed. Both solutions offer relatively good
documentation and many examples. However, it is necessary to mention that
the editors do not get much interest, and no other editors have been created
in recent years.

. 4.3 Visualization libraries

This section introduces the evaluation criteria for the visualization libraries,
describes the original analysis, and evaluates the selected libraries.

Mhttps://etl.linkedpipes.com/
Bhttps://www.jointjs.com/

43

4. Review of related technologies

4.3.1 Original evaluation criteria

The original analysis has two types of evaluation criteria for visualization
libraries - Critical and Nice-to-have. These criteria are still very relevant to the
new SPipes editor. However, the new editor is focused on script debugging.
Thus, some requirements will be reprioritized, deleted(Strikethrough), or
added (italics).

Critical

Automatic layout - The graph has to be rendered with a readable
design as described in subsection 3.1.1|

Collapsing - Nodes could be collapsed(minimalized) into more minor
visualization elements for better orientation in large graphs. The sample
of collapsing is shown in |[Figure 4.3/

Overall view of graph - Orientation in the large graph could be the
issue; thus, a navigator element with bird’s eye view pan and zoom is
necessary.

Module type icons - Modules have different types, which another kind
of icon could easily visualize.

Medule—parameter—visualization - This requirement is no longer valid

because visualization could be done via external CSS style.

Graph live editing - The library has to be capable of adding/deleting
the edge from one node to another. Also, adding/deleting nodes to
graphs is required.

Custom node arrangement - When the graph is rendered, nodes
could be drag and drop to another position.

Node/edge context menu - Context menu with the possible action
simplify usage of the application such as trash icon for the node/edge
deletion.

Nice-to-have

License - Library must be under a free license such as Open Source
licenses'®. This requirement is promoted to the critical section because
further use of libraries in development is crucial.

Visualization—of nodefedge—state -This requirement is no longer valid

because visualization could be done via external CSS style.

Documentation - The library should have actual and updated docu-
mentation.

Technology and active development - Technology has to be modern
and actively developed - only the javascript-based libraries are considered.

https://opensource.org/licenses

44

4.3. Visualization libraries

The original criteria groups (Critical and Nice-to-Have) will not be further
used. All of the criteria are marked as mandatory. Nice-to-have criteria are
essential for the project; hence, it is unnecessary to create two groups of
measures.

[=] Group _3\:
1

test 2.0

UEEE S

Figure 4.3: Collapsing example

B 4.3.2 Original analysis results

The initially selected library, The Graph Editor, was chosen based on original
evaluation criteria. However, one of the initial requirements (collapsing) is
not provided by the selected library. The collapse is a crucial feature because
it significantly simplifies orientation in the graph. Moreover, The Graph
Editor is not much actively being developed - (Yan’s Doroshenko issue -
editor.addErrorNode)E is not still closed or commented. Therefore a new
library survey is needed to find the most suitable library that meets all of
the criteria.

B 4.3.3 Libraries analysis

This section briefly describes used visualization libraries from previous analysis
of Graph-based RDF visualization tools in [subsection 4.1.1. As we know,
these libraries can visualize RDF-based data, so we check their properties in
the Feature matrix [subsection 4.3.4! - acceptance criteria are listed in Original
evaluation criteria inlsubsection 4.3.1. Another source of visualization libraries
is from Big Data — Graph Visualisations article[43] and Drawing graph library
trend[101]. All of the sources partly overlap; hence we select the most popular
ones.

"https://github.com/flowhub/the-graph /issues/378

45

4. Review of related technologies

® D3.js - D3 is the most popular drawing graph library on github[101].
It is significantly better rated than the second one, Sigma.js. However,
D3 is a general-purpose visualization library, and graph visualization is
only its small part. As we can see in [Table 4.1] D3 is the top used library
among Graph Databases. Moreover, it is used in the very popular RDF
visualizer WebVOWL. Excellent documentation is a matter of course;
however, the only concern for D3 is its complexity.

B Sigmajs - This library is purely dedicated to graph drawing. It is open-
source with excellent documentation and a lot of samples. Sigmajs is
built on Canvas & WebGL. Sigmayjs is focused on colossal graph drawing,
and the examples for graph editors are missing. However, Sigmajs is still
a compelling library for data visualization.

® Cytoscape.js - Cytoscape is used in identically named RDF visualiza-
tion tool CytoScape, as we can see in subsection 4.1.1. The library allows
the import of a wide range of data and their subsequent visualization
which shows the vast possibilities of the library. In addition, as can
be seen in [Table 4.1 it is used in all types of visualizations. Another
advantage is the excellent documentation with lots of demo samples and
a large community.

® Vis.js - Vis.js is a visualization library for visualization of DataSet,
Timeline, Network, Graph2d, and Graph3d. The library is developed to
be easy to use and manage large amounts of complex data. As we can
see in [Table 4.1] the Vis.js is used in Neo4j. The official documentation
provides many showcases and good documentation. However, the library
is not maintained anymore and it is split into many different community
moduled!'®.

® Dagre.js - Dagre is mainly used for the lay-out directed graphs. It
means the library itself can not visualize data but another visualization
tool has to be used for rendering. The supported renderers are, for
example, D3, Cytoscape, or JointJs. As Dagre cannot be used for data
vizualization, it is not considered in the Feature matrix [subsection 4.3.4l

®m Keylines - Keylines is a versatile toolkit for network visualization and
browsing. The library is able to visualize a large amount of data in a
very efficient way. Nevertheless, the solution is paid, and examples are
accessible after registrations. As we can see in [subsection 4.3.4], it is used
in ReGraph, which is also fee-based. Besides, the library has a limited
scope of customization unless it is provided via functions.

® JointJs - As we can see in [section 4.2, JointJs is used in a LinkedPipes
ETL. It proves that the library is fulfills the requirements of the data
pipeline editor. The library is well documented with a lot of demos.

Bhttps://github.com/almende/vis/issues /4259

46

4.3. Visualization libraries

However, the library is composed of two libraries JointJs and Rappid!®.
JointJs is free to use but Rappid is fee-based.

8 The Graph Editor - The Graph Editor is an originally selected React
component which provides a wide range of features from a live adjustment
of the graph such as drag and drops node, context menu, menu icons,
and others - as we can see in [subsection 4.3.4. However, the library is no
longer being developed and missing the key features such as collapsing.

B 4.3.4 Feature matrix

Feature matrix check options of selected libraries.

S

| | s 3

2l g| &2l E| 2 |4

S|E|lg|Z 25| 8§ | =

Al 8|5 |8 8 |8

@ | £ MO

@) B

=

=

Automatic layout VIVIVIVIVI VY

Collapsing VIVIVITIVI] S | X

Overall view of graph VTV XX XY

Module type icons VIV IVIVIVI| V|V

Graph live editing VIV IVIVIVI VY

Custom node arrangement VIV IVIVIVI VY

Node/edge context menu VIVIVIVIVI] VY

License VIVIVIVI]SIVS|V

Documentation VIV IVIVIVI VY

Technology and active development | v/ | v |V | X | vV | vV | X
Table 4.2:

v'- supported feature
$ - payed feature
? - not exactly support requirements
X- not supported

B 4.3.5 Evaluation of the results

As we can see in the matrix, only two libraries, D3.js and Cytoscape.js, meet
all of the requirements. However, it is important to mention that some other
libraries, such as Sigmajs or Vis.js, are able to meet most of the requirements,
if the Overall view of graph requirement is not taken into account. All of
the other libraries are also valid options but some work would have to be
invested into their extensions. However, extension of the libraries is not the
subject of this thesis.

9https://resources.jointjs.com/docs/rappid /v3.3/index.html

47

4. Review of related technologies

The finally selected library is Cytoscape.js. In terms of features, D3.js
and Cytoscape.js are equal. The D3.js has the only problem with the general
purpose of this library. Its generality could be problematic when looking for
a specific feature which could be too broad for other solutions. Cytoscape.js
is only one-purpose library for graph visualization, which makes it suitable
for our application. Also, in terms of performance, Cytoscape.js library is
optimized for larger graphs.

. 4.4 Validation

The original concept of the semantic web expected that the data could be
published without any restrictions and the application would be able to handle
them using derivation based on ontologies. It was proven that checking the
integrity of data before using it in the application is necessary in most cases
[79]. This section introduces the SHACL language and compares its execution
engines.

B 4.41 SHACL

The Shapes Constraint Language (SHACL) is an RDF-based language for
validating RDF graphs against a set of constraints. These criteria are given
in the form of an RDF graph as shapes and other components. In SHACL,
these RDF graphs are referred to as "shapes graphs," while RDF graphs that
are verified against a shapes graph are referred to as "data graphs." SHACL
shape graphs are used to check that data graphs meet a set of criteria; they
may also be thought of as a description of the data graphs[75].

B 4.4.2 SHACL execution engines

The SHACL language only defines the vocabulary and different implementa-
tions of this language exist. Implementations vary based on the programming
language or multiple implementations for a specific language such as Java.
However, the implementations are not always equaled. For example SHaclEX
the Scala implementation of SHACL does not have equal comparison results
as dotNetRDF [77; [76; [25].

However, we are primarily only interested in Java implementations where
the main ones are Apache Jena SHACL and TopBraid SHACL API. Both of
the implementations provide a command-line interface or could be imported
as Java dependency. The main difference is that TopBraid is implemented
on Apache Jena, thus it is actually an extension [4; OI]. The libraries do
not behave equally and could return different results in the evaluation. The
problematic behavior of Jena SHACL implementation is demonstrated on List-
ing (16, Jena evaluation engine can not properly deal with smi:ApplyConstruct,
which is an imported class. Thus it does not correctly evaluate the result. On
the other hand, TopBraid SHACL is working as expected. Hence the Top-

48

10

11

12

13

14

15

16

17

18

19

20

21

4.4. Validation

Braid SHACL API will be used in implementation as SHACL execution

engine.
@prefix : <http://onto.fel.cvut.cz/ontologies/shapes/form/>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

O@prefix
@prefix
@prefix

sh: <http://www.w3.org/ns/shacl#>
sml: <http://topbraid.org/sparqlmotionlib#> .
sp: <http://spinrdf.org/sp#>

:apply-construct-check

a sh:NodeShape ;

rdfs:comment "sml:ApplyConstruct must have at least 1 sml:constructQuery

with exactly one sp:text value"Qen ;

sh:targetClass sml:ApplyConstruct;

sh:property [

sh:path sml:constructQuery ;

sh:minCount 1 ;

sh:property [

sh:path sp:text ;
sh:minCount 1 ;

sh:maxCount 1 ;

Listing 16: SHACL rule example

49

50

Chapter 5

Requirement Analysis

This chapter describes the features of the new editor and introduces terminol-
ogy for accurate clarification of requirements. The MoSCoW prioritization
technique is given for the requirements, which determines the importance
of individual requirements. Further, the chapter analyzes functional and
non-functional requirements for tasks or actions that the SPipes editor must
meet. Finally, use-cases are introduced to help determine the boundaries of
the system.

B 51 New SPipes Editor

The original functionality is described in [section 3.1] where the editing and
execution of scripts, and notification of changes of individual files is explained.
As described later in subsection 3.4.2] preliminary analysis shown that neither
the script editing nor execution works correctly in specific scenarios. The
notification about script changes works without any problems; however, its
behavior could also be improved to resolve the synchronization issues.

The goal of the new editor is to reimplement and correct its original
functionality with the main focus on advanced features to manage SPipes
scripts. The new editor introduces validation and it is more focused on
debugging the scripts. Validation will be used to check semantic constraints
of the SPipes language and custom best-practice rules for writing scripts.
Debugging will allow defining test-cases to validate the pipeline, set up inputs
and output of modules manually, reuse outputs of previous executions, or
query execution history.

Some of the requirements which will be introduced in this chapter overlap
with the original implementation; however, as mentioned in [section 3.6
previous SPipes editor contains several critical bugs that are difficult to solve
in the absence of tests. We considered the rewrite problematic parts of a
code and added tests; however, the code is not written in a testable way;
thus, a rewrite would be very complicated. Further, Scala interoperability
complicates the rewrite. Problematic cases will be distinctly marked in
subsection 5.2.4| or discussed in more detail in ichapter 7| to clearly identify
what precisely has been changed and what has been kept the same.

Moreover the terminology is introduced for a better clarity of the require-

o1

5. Requirement Analysis

ments in Terminology that defines how the script will be executed
is colored as orange, while terminology related to a concrete execution is
colored as red.

.1 is defined in

in.stanoe of:: . defines >.

Module type Parameter

preceding / next

Imported Script

defines .

Parameter value specification

Input providing module Output providing module

Parameter value

is execution of 1

0..n

0@
o
£
a;‘g
&

- e ==
consumes

Module Execution Module output data Module inputs data

Figure 5.1: SPipes language terminology

B 52 Analysis of the SPipes editor requirements

This chapter introduces a prioritization technique for evaluating functional
and non-function requirements. These requirements will help to precisely
define the criteria for the new system and bring its functionality closer [26].
The requirements were obtained after consultation with the supervisor of the
diploma thesis, analysis of the original thesis, LinkedPipes ETL and TopBraid
Composer.

B 5.2.1 Prioritization Technique

MoSCoW prioritization introduces a clear definition of categories for each
type of requirement regarding their importance to the final product. The
prioritization method removes the element of personal preferences. It replaces
it by assessing the impact of the implementation/non-implementation of the
functionality on the usability /benefit of the resulting solution. The name of
the MoSCoW prioritization method is derived from the naming of individual

52

5.2. Analysis of the SPipes editor requirements

priorities of the requirements of the created product/service, which are sorted
according to importance[l6]:

® (M) Must Have: These requirements represent the so-called Mini-
mum Usable Subset (MUS), i.e., the minimum requirements that the
project must deliver. If these requirements are not implemented, the
project/solution as such will lose its meaning. If another solution to the
requirement can be found, it is a Should Have or Could Have requirement,
even if it is less practical. Moving a request to the Should or Could
Have category does not mean that it will not be delivered, but only that
delivery is not guaranteed[56].

® (S) Should Have: A requirement that is very important and should be
part of the solution even if only partially. This requirement is important
but not critical for the question of the completion or continuation of the
project. It may be disadvantageous to omit this requirement, but the
solution will still make sense.

® (C) Could Have: Requirements marked Could are desirable but not
necessary. They usually help to improve user-friendliness or customer
satisfaction with minimal development costs. These requests are typically
implemented when there is time left.

® (W) Won’t have (this time): Requests that have been agreed to be
out of scope for the current time window. It is necessary to distinguish
between the requirements that will be taken into account for the next
time window and permanently excluded.

B 5.2.2 Functional Requirements

Functional requests define the necessary tasks or actions that an application
must perform[87]. Requests are uniquely identified by FRz (Y), where x is
the request number and the Y is priority based on MoSCoW. Further, in a
more complex task, the activity diagram is used or more precise clarification.
An activity diagram is one of the UML diagrams that describes behavior of
a system. This diagram is used to model procedural logic, processes, and
workflow capture [26]. Each process in the activity diagram is represented by
a sequence of individual steps which are plotted in the model as an action or
nested action.

Furthermore, special symbols and colors are introduced for more precise
clarification of requirements.

53

5. Requirement Analysis

Symbols
v’ - fully met requirements
* - partially met requirements

not marked - not met requirements

Colors
Completely implemented
Partial implementation

e Not implemented

B Script adjustment

This section describes requirements related to work with the scripts.

FR1 CRUD of scripts

FR1.1 (M) System allows the user to create a new scriptv’

FR1.2 (M) System allows the user to list a scripts in a particular
folderv’

FR1.3 (M) System allows the user to visualize script as a graphv’
FR1.4 (M) System allows the user to update a scriptv’

FR1.5 (S) System allows the user to delete a scriptv’

FR1.6 (C) System allows the user to move a script to another

directory

e This requirement will be fully implemented in the prototype ver-
sion except for [FR1.6, which requires a better visualization com-
ponent, which allows the drag and drops feature. The workaround
for move script operation is direct manipulation within the file
system, which is recommended only for advanced users.

FR2 CRUD script modules
FR2.1 (M) System allows the user to create a new module with
specific module typev’
FR2.2 (M) System allows the user to update a modulev’
FR2.3 (M) System allows the user to delete a modulev’
FR2.4 (M) System allows the user to show module parameterv’

FR2.5 (S) System allows the user to read a module source code
related to a modulev’

o4

5.2. Analysis of the SPipes editor requirements

e This requirement is essential for the project, and it has to be
implemented in the prototyped version. The CRUD modules
operations were implemented in an original editor; however, it
does not work as expected. The problematic behavior is explained
in detail in |subsection 3.4.2.

FR3 CRUD Module parameter value

FR3.1
FR3.2
FR3.3
FR3.4

M) System visualize module parameter valuev’

M) System allows the user to add a parameter valuex
M)
)

M) System allows the user to update a parameter valuev’

System allows the user to remove a parameter valuex

~ o~~~

e This requirement is vital to work with Module, and it has to be
implemented in the prototyped version. The CRUD operations
allow defining the behavior of the Module, which gives a whole
meaning to SPipes editor.

FR4 Module type parameter template
FRA4.1 (S) System defines mandatory module type parameters for
every modulev’
FR4.2 (C) System defines optional module type parameters for

every module

e [FR4.1|helps the user to fill up the necessary parameters for module
functionality. Thus, this requirement will be implemented in the
prototype version. The [FR4.2| requires modification in SPipes
library and visualization, so it will not be implemented in the
prototype version.

FR5 Search for a module type

FR5.1 (S) System allows the user to search for specific module
typev’

e As the number of modules types increases, an easy search of avail-
able modules type is necessary. For this reason, this requirement
will be implemented in the prototyped version.

FR6 Manage script imports

FR6.1
FR6.2

(M) System allows the user to show imported scriptsv’
(S)
FR6.3 (S) System allows the user to delete imported ontologyv’
(S)
(S)
t

S) System allows the user to add existing ontologyv’

FR6.4
FR6.5

S) System allows the user to rename ontologyv’

S) System recursively propagates the ontology adjustment
o other scriptsv’

55

5. Requirement Analysis

FR6.6 (C) System checks if all the scripts are still valid import
after adjustmentx

e [F'R6.1| is a crucial requirement for the project so that it will
be implemented in the prototype. Other requirements improve
the reusability of the scripts; thus, they will be part of the
implementation.

FR7 Module relations

FR7.1 (M) System allows the user to add an input/output module
to a modulev’

FR7.2 (M) System allows the user to delete a input/output module
to a modulev’

FR7.3 (S) System not allows the user to add dependency which

create a cycle

e The modules relations are essential for executions, so they will
be part of the prototyped version. The [FR7.3|is related to [5.2.2
and it will not be implemented due to high time requirements.

FR8 Module transfer in related scripts
FR8.1 (C) System allows the user to move a module to a related

script via modal dialogv’

FR8.2 (W) System has defined integrity constraints for a module
move

FR8.3 (W) System allows the user to move a module to related

script via drag and drop

e The transfer of modules helps users in module arrangement so
that it will be implemented in the prototyped version. [FR8.2| and
FRS.3 will not be implemented due to low priority.

B Script visualization
FR9 Module type identification
FR9.1 (M) System renders a module with a distinct icon based on

the module typev’

FR9.2 (S) System allows the user to change default module types
icons*

FR9.3 (C) System allows the user to assign a custom icon to module
e [FR9.1|simplifies orientation in large graphs and identifies modules
so it will be implemented in the prototype. The [FR9.2 could

be changed in the configuration file, but the prototype does not
provide any configurable visualization. The last requirement

56

5.2. Analysis of the SPipes editor requirements

could be beneficial in some cases when the user has to identify a
particular module. Still, it will not be in the prototype because
of the low priority of the requirement.

FR10 Module grouping and collapsing

FR10.1 (S) System displays a module in groups based on a filev’
FR10.2 (S) System allows user to collapse modules based on a filev’
FR10.3 (C) System allows user to select multiple modules and col-

lapse them

FR10.4 (C) System allows user to create and assign a module to a
custom groupx

FR10.5 (S) System distinguishes the groups hierarchys

FR10.6 (S) System allows a module to be assigned to exactly one
groupv’

FR10.7 (C) System allows modules to be assigned to more than one
groups

FR10.8 (S) System allows user to redirect to module scriptv’

e The grouping and collapsing facilitate orientation in large graphs.
The basic grouping will be implemented in the prototyped version.
The [FR10.4 will be partly implemented based on custom assign-
ment to the group in the script. The [FR10.3], [FR10.5, [FR10.7
will not be implemented due to lack of support on selected visu-
alization library.

FR11 Script overview

FR11.1 (S) System allows user to view a graph from bird’s eye
perspectivev’

e Script could contains more then 100 modules and the orientation
in this graph could be problematic. Thus |FR11.1| will be imple-
mented in the prototype version to simplify the orientation in
large graphs.

FR12 Script rendering
FR12.1 (M) System allows user to render a graph in predefined
layoutsv’
FR12.2 (S) System allows user to fix the positions of the modulex
FR12.3 (S) System allows user to arrange a custom layout of the

graphv’

e For better orientation in the graph, it is necessary to provide the
user with intelligent visualization of the graph to implement the
prototype.

o7

5. Requirement Analysis

FR13 Notification
FR13.1 (M) System notifies the user about an adjustment on the
currently edited script and offers to refresh the pagev’

FR13.2 (S) System notifies the user about a graph appearance ad-
justment and offers to refresh the page because the script
could be edited by a different user or directly in the file
system.

FR13.3 (C) System automatically re-renders the graph after the

adjustment

e The FR13.1 will be implemented to allows multiple users to edit
scripts. The [FR13.2| and [FR13.3| will not be implemented due to
lack of time.

B Execution and debugging
FR14 Script execution

FR14.1 (S) System allows the user to list script execution historyv’
FR14.2 (S) System allows the user to show an execution reportv’

FR14.3 (S) System allows the user to download a module execution
input/outputv’

FR14.4 (M) System allows the user to list a functionv’
FR14.5 (M) System allows the user to execute a functionv’

FR14.6 (S) System allows the user to see the successful and the
unsuccessful status of the executionx

FR14.7 (C) System allows the user to see the progress of execution
FR14.8 (S) System can handle different versions of the same script
e [FR14 is one of the thesis requirements, so that will be imple-
mented in the prototyped version. The [FR14.7 requires modifi-
cation on the SPipes engine side, so it will not be implemented

in the prototyped version. [F'R14.8| will not be implemented due

to its complexity and lack of time. The design of the function
execution is proposed in [Figure 5.2/ and described in [7.3.

FR15 Module execution

FR15.1 (S) System allows the user to show a module input/outputv’

FR15.2 (S) System allows the user to show variables assigned to a
modulev’

FR15.3 (S) System allows the user to edit a module input/outputv’

FR15.4 (S) System allows the user to execute a module with a
mocked inputv’

o8

5.2. Analysis of the SPipes editor requirements

act Execute function)

Script developer

Open script in editor

Select function to
execute

Setup function
paremeters

Validate parameters

Are paremeters valid?

i
i
1]

Redirect to
execution page

Wait till the execution is
complete

Figure 5.2: Function execution
FR15.5 (S) System allows the user to execute a module with a
indirectly mocked input

e This requirement is an essential part of the debugging process
and will help the user debug a specific module. will not
implement due to unimplemented functionality on the SPipes
engine side. The design of the debugging of the module is proposed

in and described in (7.3,

FR16 Module execution status

FR16.1 (S) System distinguish by color the status of the module
after execution

e This requirement will not be implemented due to a lack of time.

99

5. Requirement Analysis

act Module debug based on previous execution)

Script developer

Display status of the
nodes

Open script in editor

Is nodes status

expected? Y
e

Select problematic node

Check module variables

Are variables

expected? Y R

Yes

Check the input / output
of the modules

Modify module input

Validate input

No Is input valid?

Execution module
with modified input
Is status of problematic
node ok?

Adjust modules to respect the
modified input

Figure 5.3: Module debugging proposal

B Validation
FR17 Script integrity constraints

FR17.1 (M) System has defined set of custom best-practice rules to
write scriptsv’

FR17.2 (S) System allows the user to show a validation reportv’

60

5.2. Analysis of the SPipes editor requirements

FR17.3 (S) System allows the user to navigate to an invalid modulev’

e All requirements are crucial to validation so that they will be im-
plemented in the prototyped version. The design of the validation

is proposed in and described in

act Validate script)

Script developer

Open script in editor

Is report empty?

Open validation
report

Check validation
error message

Navigate to
problematic node

Adjust problematic
node

Figure 5.4: Script validation

FR18 Module integrity constraints

FR18.1 (M) System has defined set of semantic constrains of the
SPipes languagev’

FR18.2 (C) System does not allow the user to upload invalid module
data

e The is part of the thesis assignment, so it has to be
implemented in the prototyped version. The has to check
integrity constraints before uploading, which not be implemented
due to lack of time.

Hl Others

FR19 Browser compatibility

61

5. Requirement Analysis

FR19.1 (C) System detects unsupported browser
e The requirement will not be implement due to low priority.
FR20 Newest version of SPipes library

FR20.1 (S) System has always newest version of SPipes libraryv’

FR20.2 (S) System informs user if newer version of SPipes library
existsx

e This requirement will be implemented in the prototyped version.
FR21 System synchronization

FR21.1 (S) System handles the transactions and does not enter into
an unexpected statex

e The synchronization prevents the unexpected states of the appli-

cation so that it will be implemented in the prototyped version.

B 5.2.3 Non-Functional Requirements

This chapter introduces non-functional requirements (NFR) that will be taken
into account during the development. Non-functional requirements are an
addition to functional requirements. They describe other necessary properties
needed for the environment and context [29]. Requests are uniquely identified
by NFRz (Y), where z is the request number and the Y is priority based on
MoSCoW.

Logging

NFR1 (M) The application will save the log to the application server log
file. CRUD operations with entities and any unexpected states
of the application will be logged.v'

Localization

NFR2 (M) All user environments of the application will be localized
into English.v’

Configuration

NFR3 (M) Configuration of all the applications will be accessible via an
external file.v’

Licensing

NFR4 (M) All components of the system used will meet the license
conditions for the free creation and subsequent operation of the
application.v’

Compatibility and portability

62

5.2. Analysis of the SPipes editor requirements

NFR5 (M) The application will offer a responsive user interface adapted
for display on tablet devices and desktop computers. The user
interface will be compatible with Mozilla Firefox version 89,
Chrome version 91.v’

NFR6 (M) System will use the newest version of used technologies.v’

Maintainability

NFR7 (M) At least 75% server part of the application will be covered
by unit tests.v’

NFRS8 (M) The application will be tested by user testing at least on 3
people.v’

NFR9 (M) All of the service will be containerized for easy execution of
the whole application.v’

Performance

NFR10 (M) System will allow concurrent use of the application at least
for 5 people.v’

NFR11 (M) The loading of the component will not take longer than 5
seconds.v’

Deployment

NFR12 (S) The entire application will be easy to run and ready for
production deploymentv’

B 5.2.4 Use-cases

The usage diagram captures the external view of the modeled system and
thus helps to reveal the boundaries of the system and serves as a basis for
range estimates. It is a sequence of related transactions between a participant

and a system during a mutual dialogue. The primary purpose is to capture

the actors who communicate with the system and the relationships between
services and customers. In both ways - visually and textually, understandable
to system developers and customers.

The system has two groups of users.

® Script viewer: A user typically wants to run only a script and is not
expected to have a more profound knowledge of creating scripts. The
user should be familiar with the individual SPipes modules.

® Script developer: An expert user who can execute, debug and create
SPipes scripts. The requirement from the user is to know SPipes module
types and the SPARQL language.

63

5. Requirement Analysis

As mentioned in the colors are used for better clarification;
however, the original SPipes editor is partially overlapping with the new
editor, so it is vital to determine what the original functionality was and what
is new. Thus the state of the original cases is marked by a colored border,
and the current state fills the body. It is essential to mention the black color
border, which is not part of the color palette(introduce in subsection 5.2.2)),
is working as an expected state. The list of the requirements is in

Scrﬂ}t viewer

|
<<inclide>>
i

<<extends>>

- Sextengsi-

------------- ‘m%

<<extend=>

Figure 5.5: Use-case diagram

64

Chapter 6

Architecture Design and Technologies

In this chapter, the reasons that led to the choice of used technologies and
the application architecture design are described. The presented solution of
the application takes inspiration from the legacy S-Pipes editor, see
Final architecture aims to extend the legacy architecture with the respect
to the new functionality of the editor. Due to the acquired requirements,
see and analysis of the related technologies, see a web
application was determined to be the most suitable solution option.

B 6.1 Application structure

This section explains the application design and the functions of the main
components. The system is divided into two main parts — the server part,
which takes care of the application logic, and the front end, which handles the
UL In this section, only the application design is explained — the implementa-
tion detail is described in The interconnection of the whole system
is described in more detail in [section 7.2l which deals with the dockerization
of the entire system.

REST-API
l] provide data : ; HEST—AEI =-u :
& :] execute scripts — :
Browser websgcket . spipes-editor-backend spipes-engine
React app notify : :

Figure 6.1: Application structure

65

6. Architecture Design and Technologies

B 6.1.1 Server side

® The SPipes Editor backend - This part of the system handles most
of the functional requirements of script editing, data preparation for
visualization, validation, and script execution calls. The actual script
execution is provided by the SPipes Engine, which communicates with
the backend using REST-API. For the client part of the application, the
data is also provided using REST-API. In addition, the server notifies the
client-part of the application using WebSocket described in |section 3.2l
The last part of the application is the RDF4J database, which is used
only for reading the execution history and additional information.

® SPipes Engine - The engine is an implementation of the SPipes lan-
guage described in [section 2.5 It allows executing the script functions
with custom parameters and log states of every module into the RDF4J.
The engine communicates via REST-API or console. Further, the engine
produces rather large files which serialize the input and output of every
module. The large size of the file is the reason why data are not in
RDF4J.

8 RDF4J - RDF4J is a robust framework described in |subsection 6.2.1}
which serves as a database for the system. The framework serves to store
and query the script’s execution history and other additional information.

B 6.1.2 Client side

® S-Pipes UI - This part of the system provides the user with a list of
scripts that can then be visualized in a form of a graph. Furthermore,
the UI allows the user to browse the history of executions, which is
also subsequently visualized as a graph. Simply put, this part of the
application provides an interface for fulfilling functional requirements.
The Ul communicates with the backend part using REST-API and
WebSockets.

B 6.2 Technology stack

This chapter describes selected technologies for further implementation. The
main difference from the legacy SPipes editor is the use of the Java instead
of Scala language. This switch, however, raises some issues as described in
section 3.5l Selected technologies are used to simplify and enable work with
semantic web technologies, which are explained in greater detail in [section 2.2l

B 6.2.1 Server side

This section describes notable technologies on the server-side of the application.
The Java language used was already introduced in subsection 3.5.1; the same
applies to the validation framework TopBraid SHACL API in [section 4.4l

66

6.2. Technology stack

® Spring BootE| - Spring Boot framework is an extension of the Java
Spring framework with more straightforward configuration and a built-in
application server. This significantly reduces the required configuration,
and the resulting application is effortless to run. Spring Boot is based on
the MVC architecture providing many modules that offer a wide range
of services such as Authentication and authorization or Data access,
which enables working with relational databases or NoSQL databases.
Another essential feature is the support of testing via unit tests and
integration tests [98]. The basic architecture of the Spring Boot is shown

in [Figure 6.2

Spring Boot flow architecture

Repository Class Extending

CRUD Services

Dependency
Injection

Service
Layer

Figure 6.2: Spring Boot Flow Architecture [85]

Controller
request

JPA/Spring
Data

8 Apache Jenaﬂ - Apache Jena is an open-source Java framework for
working with semantic web and Linked Data. Jena offers a wide range of
APIs to work and process RDF data [4]. The concept of the semantic web
is already explained in [chapter 2, which is required to work with Jena.
It gives access to querying and updating RDF models using SPARQL,
comparing two RDF models, and much more. We introduce only a small
part of the Jena functionality, which is relevant to the thesis.

We firstly introduce the representation of a triple as a Statement. It
allows user to access the subject, predicate and object. The Statements
are accessible via the Model interface, which is a set of Statement and it
provides a CRUD operation.

The second significant part is the loading of RDF-based files such as
SPipes scripts. As described in the SPipes contains the
owl:import; thus, Jena has to be capable of working with imports. Class
critical for working with the scripts is OntDocumentManager, which loads
all necessary files, and it is able to represent script data as Statements.

"https://spring.io/projects/spring-boot
https:/ /jena.apache.org/

67

6. Architecture Design and Technologies

® JOPA? - JOPA is a Java OWL persistence framework for programming
access to OWL2 ontologies and Java RDF graphs. In order to achieve
the contract between a JOPA-operated Java application and an OWL
ontology, the system is built on the OWL integration restrictions [53].
The System and API architecture follows the JPA 2.1, which allows
specifying the details of the table in the database [44]. The example of
both technologies is shown in Listing [17| and Listing 18], which maps a
table PERSON with id and name properties.

@Entity

@Table(name = "PERSON")

public class Person {
@Id @GeneratedValue
@Column(name = "id")

private int id;

@Column(name = "name")

private String id;

Listing 17: JPA example

@OWLClass(iri = "person")
public class Person {
@Id(generated = true)

private URI uri;

@0WLDataProperty(iri = "person_name")

private String name;

Listing 18: JOPA example

8 RDF4J - RDF4J is an open-source framework for working with RDF
data. It provides storing, querying, and analyzing the RDF data. The
supported query language is SPARQL.

B 6.2.2 Client side

The client-side is build on the Javascript React framework; the most notable
technologies are mentioned. The technology which is not discussed here is
CytoscapedJs which provides the visualization, as it is already described in
subsection 4.3.3l

3https://kbss.felk.cvut.cz/web/kbss/jopa

68

6.3. Design of non-trivial requirements

® React” - React is a JS open-source library from Facebook for creating a
user interface (UI). It focuses on one specific area, and if we look at it
from the point of view of the classic MVC architecture, it forms only the
view layer that presents data to the user [69).

The basic building block consists of components that are various reusable
HTML elements with encapsulated functionality, the assembly of which
creates a complex UI application. These components then have their
own properties and manage their internal state. This declarative way of
working with application data leads to more predictable behavior and
easier debugging.

® Webpack’ - The primary purpose of Webpack is to work with javascript
modules, create packages for the browser, and facilitate the work of
developers. It is an open-source module bundler for JavaScript. When
we have javascript code written in a modular way, Webpack processes it
and creates a js package from it. Also, it can import assets that are not
JavaScript into the modules, such as images, styles, etc.

Webpack also provides a development server that facilitates development.

® SForms® - SForms allows to visualize a dynamic form from the provided
ontological data in the JSON-LD format. Data contains the collection
of the form’s fields and the behavior of the form. Formula functions
include dividing a form into several steps, which are displayed based
on filled fields. Furthermore, it supports various input types such as
Input/Textarea, Datetime picker, Checkbox, etc.

B react-treebeard’| - React-treebeard is a React component for direc-
tory structure visualization. In the project it the library visualizes the
directories with the scripts.

B 63 Design of non-trivial requirements

This chapter describes solutions for non-trivial parts of the application, which
refer to functional requirements in [subsection 5.2.2|

B 6.3.1 Execution

This design issue is related to the Script execution (FR14]) and module
execution (FR15)). The problem is related to the SPipes engine. The
dependencies of every module are displayed in [Figure 7.4l As it can be seen,
if we want to debug the script, the engine has to have access to the location of
the scripts, or we have to provide the scripts to the engine in some other way.

“https://reactjs.org/

Shttps:/ /webpack.js.org/
Shttps://github.com/kbss-cvut /s-forms
"https://github.com/storybookjs/react-treebeard

69

6. Architecture Design and Technologies

Originally, the SPipes was designed as a service that provides REST-API and
allows the client to execute the function. We considered two solutions for the
SPipes engine — as a library or a service with API.

The service solution with REST-API is already implemented and working;
however, it requires running the SPipes engine and the SPipes-backend on
the same machine or having the file system as a service. An example of this
kind of file system is Amazon Simple Storage Service (Amazon S3). S3 is an
object storage service that offers industry-leading scalability, data availability,
security, and performance [74]. Also, in our case, the database RDF4J could
serve as a script shared point; however, the scripts and the logs are enormous,
and the RDF4J database is not designed to handle this kind of data. Another
possible solution is to expose the scripts to be read via HTTP. This solution
is straightforward to implement; however, it raises certain security risks. We
do not always want every user to be able to see the content of all the scripts.

The solution of having the SPipes engine as a library expects the engine
to be easily configurable and it is, by default, a part of the application. It
means that the access to the scripts on a file system is possible by default;
however, it increases coupling. This approach simplifies the work with the
engine and reduces the complicated configuration and the requirement to
have both services on the same machine. The only downside of this solution
is the requirement of the re-implementation of the engine to the library. This
solution will not be implemented due to high time requirements.

The selected solution in this thesis implements the SPipes engine as a
service. We will work with a shared file system for both services for further
implementation, with the possibility of exposing the scripts and logs via
HTTP.

B 6.3.2 Debugging

Debugging the application scripts is related to [subsection 6.3.1| and requires
that each module in the application returns expected output for specific input.
The suggested solution that allows the user to debug the script is as follows.
As can be seen in [Figure 5.2| the user selects a function and then executes
it, waits for the result, and, if it does not meet his expectations, modifies
specific modules and starts the execution again. However, this procedure
can be problematic in pipelines that run in the order of hours. Therefore,
it has been proposed to allow the user to run just one module, which will
have inputs from the modules on which it depends. For better usability, it is
advisable to build on an existing execution, which is designed in |[Figure 5.3.

Another debugging option is to set the inputs for the concrete modules and
start the module, which is further in the pipeline. This module consumes the
output of the previously set modules. This functionality allows the developer
to test only a part of the pipeline.

70

6.3. Design of non-trivial requirements

B 6.3.3 Script validation

The open-world nature of the RDF language concept implies that it is difficult
to enforce a module schema. The introduction of validation via SHACL is
described in The proposed solution is to define best practice rules
to help users check the correctness of the module.

The proposed design of the validation can be seen in The main
feature is an overview of all problematic modules with a short description of
the problem. Further, the user could localize the module and modify it. That
is, the user could iteratively improve the quality of the questionable modules.

Bl 6.3.4 Modules grouping and collapsing

This section describes the issues related to modules grouping and collapsing
. This problem is illustrated in where four files are
displayed, each with a different color. The yellow file is the main script that
is visualized. This file imports a green and a blue file, and these two files
import a purple file. Our goal is to find a solution that can respect this fact
in the resulting visualization.

One of the possible solutions for the file is to remember all of the imported
files, which are collapsed during the collapse operation, recursively for all
their imports. However, it is important to mention the technology restriction
on the side of the selected Cytoscape.js library. Each node in the graph can
belong to exactly one group, so it is not possible to enter information directly
into the graph that the yellow file imports blue and green. However, it is
possible to add anonymous nodes to the graph that are able to reflect this
fact. However, this solution requires a complex implementation modification
on the part of the library.

[Construct example data]

next

\d
[Identify SKOS concepts

Bind preferred label prnperty]

next

[Construct SKOS broader relations
next

[Construct concept labels]

next

next

Return skosified

Figure 6.3: Skosify script grouping and hierarchy example. Source is SPipes
documentation.

71

6. Architecture Design and Technologies

B 6.3.5 Module transfer

Transferring a module in a related script(FR8) could be highly problematic
and could corrupt script that is no longer valid and executable. An example of
a complex operation is moving a module that is imported in multiple scripts.
Thus, if the module Identify SKOS concepts was moved to the green file, the
blue file would lose this module because it does not import the green file.
Therefore, this move would have to import the green file into the blue script,
and the purple file would be useless. However, it is necessary to realize that
the purple file can be used in other scripts, and the issue would have to be
addressed in them as well. Thus, this problematic move is considered invalid.

An example of a non-problematic operation is to move the yellow module
Construct example data to any file. The problem could only occur if this
module used a different script, but we do not assume this case in this example.

The result of the design is to make non-problematic operations automatically
valid and inform the user about complex operations that could cause an invalid
state of the scripts. As described before, the result of the procedure could be
an empty file. Also, the circle reference of the imports could be an issue.

The sample valid transfer of the Construct example data from [Figure 6.3 is
shown in [Figure 6.4. The problematic scenario | 6.4b| shows a transfer of the
purple module Identify SKOS concepts to a different script. The problem is
similar to importing a class in Java. The purple module does not know it is
imported to the green or blue file. Thus, if we transfer the purple module to
the blue script, the green file loses track because it only imports the purple
file, which does not contain the Identify SKOS concepts anymore.

Retum skosified

(a) : Valid transfer (b) : Invalid transfer

Figure 6.4: Module transfer. Source is adjusted from SPipes documentation

B 6.3.6 Script to form

The original solution has already been proposed in the legacy SPipes editor.
This is an implementation problem rather than a design problem. All of the
issues are closely related to the SForms framework and SPipes scripts. Firstly
the module is taken, and its properties are parsed into Question class, which
is the SForms class for data representation, and serialized class is visualized
in SForms. The form is rendered to the user who can update it. The form is

72

6.3. Design of non-trivial requirements

submitted, the response is parsed to a Question, and changes are written to
the module.

B 6.3.7 The actual state of the system for multiple users

The basic design of this solution was designed in the legacy editor in

section 3.1.2. The UI part of the application could receive messages about
the changes from the server in real-time via WebSocket. An improvement is

the introduction of the type of adjustment. If a graphical change occurs, the
system redraws the graph instead of refreshing the page(FR13.1).

73

74

Chapter 7

Implementation

This chapter describes the technology stack update in the original editor.
Further, the design for testing the application is explained, simplifying devel-
opment by replacing the Spring framework with Spring Boot and the layout
of the individual pages in the UI. Docker technology is further presented for
easier deployment and deployment of the new editor. Next, the communi-
cation of particular services behind the reverse proxy is described in detail.
The last part describes the implementation of the requirements defined in

B 71 Legacy SPipes editor update

This section describes technology updates on both the server and the client-
side. Further, the topic of testability and simplification of the development is
described. Lastly, the layout of the UI is introduced.

B 7.1.1 Technology stack update

The current application architecture differs from the original one, introduced
in [subsection 3.2.1] primarily in the implementation detail. As described
in [subsection 6.2.1] the main difference is the use of Java by which the
interoperability issues mentioned in are excluded.

Another significant change is the replacement of the Spring framework with
the Spring Boot framework. Spring Boot is just a Spring extension to make
development, testing, and use more convenient [8]. This change is mainly
reflected in the development and deployment. Other library update was Jopa
from 0.13.1 to 0.13.5. The most important libraries are libraries supporting
junitb and mockito testing libraries. The project focuses on the application
tests from the beginning of the development. Thus every component had to
be written in a testable fashion, more in

A fundamental change occurred on the Ul side. It was separated out as
an independent application and completely re-implemented. The applied
technologies are described in section 6.2l The modified UI is built on the React
technology, identically as the original Ul, but has been updated from version
15.3.2 to 16.13.1, which fixes minor bugs and offers better error handling

75

7. Implementation

[95]. Furthermore, the version of the webpack technology was upgraded
from 1.12.15 to 4.42.1. It has not been used in the original application even
though it is among its dependencies. The main change is in the visualization
library from The Graph Editor to Cytoscape.Js based on the analysis in
subsection 4.3.5. The last significant update is the update of the SForms
library from version 0.1.7 to 0.2.6, which fixes the visualization error of text
fields and adds new functionality [49].

B 7.1.2 Testability

As stated in NFRY|, the server-side of the editor has to be covered by tests.
The Spring Boot, as a highly used commercial framework, provides many
options of testing [102] of its functionality. On the other hand, the other
relevant technologies do not offer such extensive possibilities. The following
list explains the selected methodology for testing the application.

® MockMvc - MockMve is a Spring testing class which helps in testing
of controllers and commonly used in integration tests [10]. In our case,
this class allows us to test the correctness of the REST-API endpoints.

® Life cycle of test data - To enable testing of the SPipes scripts, a new
methodology, shown in [Figure 7.1, was created. Adding a new property
to a module or removing a module is difficult to test without an existing
script with prepared data. As figure [7.1a) shows, the life cycle of the
test always starts with the preparation of the new data, assertion, and
deletion of the whole folder. Also, the application is well parametrized
to support this kind of setup.

76

7.1. Legacy SPipes editor update

Create new scripts
home directory

Copy SPipes scripts
Create new scripts BeforeEach
home directory

BeforeEach

Start fresh test RDF4)
with testing data

Copy SPipes scripts

Arrange
Arrange

Test
Test

Assert

Delete scripts home
folder

Delete scripts home Afterkach

AfterEach folder

Stop test RDF4J

(a) : Basic schema of the integration test (b) : Test with database

Figure 7.1: Life cycle of the integration test

B 7.1.3 Development simplification

As stated in [subsection 7.1.1), the Spring framework is replaced by Spring
Boot. This replacement allows the developer to run a project without caring
about the execution server. Further, the testability of the application is one
of the main requirements, so the user can freely change the code and see the
consequences of the changes [57]. The last in simplification is the introduction

of Docker, which is described in detail in

B 7.1.4 Ul Layout

The proposed design of the application is divided into three parts:

® Scripts - User can list the folders with scripts and perform CRUD
operations on the scripts.

® Executions history - User can see history of the execution and navigate
into its detail.

77

7. Implementation

® Scripts detail - User can edit the script, execute function, check execu-
tion and validate script.

The Scripts detail page is shown in [Figure 7.2. In the upper part, there
is a menu bar with Scripts and Executions bars, which redirect the user

to other pages. The left side contains operation for Add module, Function
call for calling script function, Graph render strategy allows different ren-
der strategies. Further, the buttons are self explanatory - Ezxecution report,
Manage script’s ontology and Validate report. The last component is Vari-
ables info, which displays the name of called function and values of vari-
ables based on mouseoverhttps: //www. w3schools. com/ jsref/ event_|
|[onmouseover. asp|action. The right side contains the script as the graph
visualization.

S-Pipes Ul Scripts Executions

Nodes count: 4
Add module hello-world3.sms.ttl

Add module - Bind person name

Function call
Call function -

Graph render strategy Bind person id
TopBottom - o (]

Execution report

Manage script's ontology Construct greeting
L]]

Validate Report

Variables info
_pld: execute-greeting Return greemi statement

firstName: Robert o °
lastName: Plant
personMame: Robert Plant

Figure 7.2: Hello-world3.sms.ttl script execution detail

B 7.2 Dockerization of SPipes editor

This chapter introduces the reader to the Docker technology, i.e., dividing
each service into a container. It also explains the deployment of the entire
system and the communication of individual services with each other. The
last section explains the concept of a reverse proxy.

78

https://www.w3schools.com/jsref/event_onmouseover.asp
https://www.w3schools.com/jsref/event_onmouseover.asp

7.2. Dockerization of SPipes editor

B 7.2.1 Docker and Docker compose

Docker is an open-source project to automate the deployment of applications
as portable and custom containers that can run in the cloud or locally. Its
goal is to provide a unified interface for isolating applications into containers
in mainstream operation systems macOS, Linux, and Windows.

The container contains only the required applications and their specific files
but does not contain a (virtualized) operating system. This significantly re-
duces overhead compared to traditional virtual machines. Therefore, Docker’s
advantage is a much smaller size, greater flexibility, and thus lower operating
costs. On the contrary, the disadvantage is the connection with the guest
operating system, which is directly used for running applications in containers
[61].

The example of the Dockerized app, which could run in different environ-
ments, is shown in

Dockerized App

LY

Windows Server Linux
Container Container

Run anywhere

Service
Provider

Docker

Figure 7.3: Deployment to the cloud with Docker [61]

B 7.2.2 Containers and Docker compose

The SPipes editor requires two other services: RDF4J and the SPipes engine
with a rather complicated configuration. Further, the SPipes engine is based
on the Spring framework, which requires an application server such as Tomcat
and the RDFJJ for logging the executions. Lastly, React requires the ngian]
server.

In order to solve the complex configuration, all of the services are dockerized,
and the whole application is started via the Docker compose. Docker compose
is a tool for defining and running multi-container Docker applications specified
in docker-compose.yml. It shows configuration options for each service and
enables running of the SPipes editor.

The proposed architecture of the system and communication between the
containers is shown in and the docker-compose.yml is shown in
The SPipes editor Ul is marked as spipes-editor-ui, the SPipes

Thttps://www.nginx.com/

79

7. Implementation

editor as spipes-editor-rest and the SPipes engine as spipes-engine and RDF4J
as RDF4J.

The Docker compose immensely helps with the parametrization of the
project. Moreover, it allows the user with local execution and further devel-
opment.

disk / static files
N
findex.html
fapp.js
nginx
' spipes-editor-ui M
port: 3000 e

reverse proxy

tomcat tomcat

spipes-editor-rest %ﬁq, spipes-engine
—| g port: 18115 @%' port: 8081
% |8
[
| = file system
il scripts

Figure 7.4: Deployment diagram

B 7.2.3 Reverse proxy

In order to avoid security risks such as CORS? attack and simplification
of local development, a Reverse proxy was chosen. A reverse proxy divides

incoming traffic across multiple servers, maintaining a single external interface
for the client [70].

B 73 Requirements implementation

This chapter describes the implementation of the functional requirements
described in [subsection 5.2.2| and the non-functional requirements described
in |subsection 5.2.3. The structure of every requirement beings with the status
of implementation of every sub-requirement.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

80

7.3. Requirements implementation

B 7.3.1 Implementation of Functional Requirements

Every functional requirement has a following structure: the description starts
with an overview, explains where it could be found in UI, if possible, and
describes the implementation detail.

B Script adjustment

CRUD of scripts
® Implemented - [FR1.1, [FR1.2, [FR1.3, [FR1.4, FR1.5

® Not implemented - |FR1.6

The home page consists of a list of folders and scripts displayed in The
list of scripts is received via a REST-API endpoint. The structure of the
files is represented by react-treebeard, described in Each folder has an
onClick action that displays a modal dialog with possible actions that are
listed in [7.5b. Furthermore, the user can create a new script in the folder or
delete an existing one.

The (moving a script to another directory) lacks support on the
react-treebeard side. The framework does not provide a drag and drop feature.
The workaround is simple, and it is described in however, the direct
manipulation with files is always dangerous as we can no apply any integration
constrain and could break the pipeline.

S—Pipes Ul Scripts Executions

Scripts

Right click on directory/file to add/remove file

8 spipes_modules
i sample
I hello-world

Bj sample-script.ul

W vin-example
W8 simple-import hello-world)
I modules CREATE SCRIPT DELETE
m skosify
(a) : Scripts listing (b) : Directory actions modal dialog

Figure 7.5: Scripts page

CRUD script modules
® Implemented - [FR2.1, [FR2.2| [FR2.3, [FR2.4, [FR2.5

81

7. Implementation

The module creation is possible via Add model with a dropdown menu
(on the left side in , where the user selects a module type and the SForms
modal window shows up after the selection. The dropdown menu allows the
user to filter the desired module type which is related to The SForms
modal is shown in The SForms has two modes. The graphical
mode in which the user can read the properties of the module as input fields.
The second option is an editable text representation of the module in Turtle,
which is recommended for advanced users only.

The module can be removed via the cytoscape-cxtmemﬁ plugin, as shown
in[7.7

All module-related data are received via REST-API endpoints.

Modal heading x

Module of type Apply Construct (http:/ftopbraid.org/sparglmotionlib#ApplyConstruct)

Module of type
Apply Construct
(http:/topbraid.org URI

Ispargimationlib#A
pplyConstruct) http:/ionto fel.cvut.cz/ontologies/s-pipes/hello-world-example-0.1/construct-greeding

http:/fwwaw.w3.0rg/2000/01/rdf-schemad#label

Construct greeting

http:/ftopbraid.org/spargimotionlib#constructQuery o

PREFIX : <http:/ivfn.cz/ontologies/s-pipesihello-world-example-0.1/>
CONSTRUCT {
?person :is-greeted-by-message ?greetingMessage .
}
WHERE {

http:/ftopbraid.org/spargimotionlib#replace

true

Save Changes

Figure 7.6: SForms modal widows

CRUD Module parameter values

Implemented - [FR3.1, [FR3.4
® Partly implemented - [FFR3.2| [FR3.3

All of the adjustments in the module parameter values are related to SForms,
which is shown in [Figure 7.6, The modal window is triggered by a click
on the cogwheel icon shown in The visualization (FR3.1) and
update can be directly performed by input variables. The creation
of the form is described in |subsection 6.3.6. The add or remove parameter
values is marked as partly implemented because it is possible only via direct

3https: //github.com/cytoscape/cytoscape.js-cxtmenu

82

7.3. Requirements implementation

Bind person name

Figure 7.7: Modul menu

edition of the Turtle representation of the module. The access to the turtle
representation possible by the TLL bar on the left side, and it is recommended
for advanced users only.

The implementation uses the SForms library, which receives parsed module
in JSON-LD via REST-API.

Module type parameter template

8 Implemented - [FR4.1
Not implemented - |FR4.2

Based on the request with a module type, the server provides data for SForms.
It is necessary to mention that the SForms only visualizes data but it does
not handle the logic of the required input fields. The method of the module
data generation is described in [subsection 6.3.6/

The optional fields require adjustment in both libraries, and it was
not implemented due to the lack of time.

Search for a module type

® Implemented - [FR5.1

The Add module element on top left side of is a dropdown element
from Sematic Ul Reactﬂ which provides a filtering option.

“https://react.semantic-ui.com/modules/dropdown/

83

7. Implementation

FR6| Manage script imports
® Implemented - FR6.1}, [FR6.2, [FR6.3|, FR6.4, [FR6.5
® Partly implemented - |F'R6.6

Script imports button is located on the left side in [Figure 7.2, After clicking,
a modal window will appear with a tabular listing of imported scripts and
allow the user to add and delete scripts. The [FR6.6|is partly implemented.
The user can permanently delete or add the imported script; however, this
operation may prevent further loading and visualization. The user can then
change the import again. Nevertheless, the correct solution would be to warn
the user what the removal or addition of a script will cause.

The implementation finds all imported scripts and allows deletion or add
imported scripts via REST-API endpoints.

FR7 Module relations
® Implemented - FR7.1, [FR7.2
® Not implemented - |FR7.3

The relations between modules are implemented via the cytoscape-compound-
drag-and-drogP’l Tt is a Cytoscape extension which allows to create an edge
between two nodes in a graph through drag and drop. The deletion of the
edge is performed by a trash icon shown in [Figure 7.7,

FRS8 Module transfer in related scripts
® Implemented - [FR8.1
® Not implemented - FR8.2, [FFR8.3

The modal window with a transfer option is triggered by a click on the fly
icon shown in [7.7. Modal windows contain all of the imported scripts where
the module can be moved. There are two options of transfer: MOVE and
MOVE RENAME. The first one moves the module to a script, and it does
not care about the imports. It means that the script which uses the module
can be a referenced to it. The second option adds import of a destination
script to all scripts which use the moved module.
The implementation follows proposed design in [subsection 6.3.5l

B Script visualization

FR9 Module type identification

Implemented - FR9.1

Shttps://github.com/cytoscape/cytoscape.js-compound-drag-and-drop

84

7.3. Requirements implementation

® Partly implemented - |[FR9.2
® Not implemented - [FR9.3

The Cytoscape allows assigning a custom icon to a node, which can represent
different module types. [FR9.2 does not have a convenient graphical interface,
but the configuration for module type and icon is hardcoded in the configura-
tion. This configuration can be changed; however, it is recommended for the
advanced user only. The custom icon is not implemented due to low priority.

FR10 Module grouping and collapsing

8 Implemented - [FR10.1, [FR10.2, [FR10.6, [FR10.8
® Partly implemented - |FR10.4

Not implemented - |FR10.3, [FFR10.5, [FR10.7

Grouping and collapsing is described in subsection 6.3.4. Modules are grouped
according to the file that can be collapsed. An example of such a group is in
Figure 7.2l Collapsing into a single node is possible by hovering the mouse over
the group, where a plus icon appears in the upper right corner. Navigation to
the module source script is possible using the file icon in |[Figure 7.7, Collapse
is implemented using the Cytoscape extension cytoscape-expand-collapse®l
Grouping based on multiple groups is unfortunately impossible due to the
Cytoscape library, which allows to assign only one group to a node.

FR11 Script overview
8 Implemented - [FR11.1

Cytoscape has cytoscape-navigator|’| extension, which provides a component
with an overview of the graph. The overview of the graph is in the right
corner.

FR12| Script rendering
8 Implemented - [FR12.1, [FR12.3
8 Partly implemented - FR12.2

The render strategies options are located on left side Graph render strategy in
Figure 7.2 The possible options are from TopBottom, LeftRight and Custom.
FR12.2|is implemented by a Custom; however, the default choice for all nodes
is the same. This means that for larger graphs, all nodes are in the same

Shttps://github.com/iVis-at-Bilkent /cytoscape.js-expand-collapse
"https://github.com/cytoscape/cytoscape.js-navigator

85

7. Implementation

place, which causes confusion when rendering. The rendering options can be
set by Cytoscape.

FR13| Notification
Implemented - FR13.1
® Not implemented - FR13.2, FR13.3

If the user opens the script, the server saves his session. When a change
occurs in the file, the user is notified via WebSocket. The change appears as
a modal window on the Ul side, informing that the script has been changed
and offering to refresh the page.

It is necessary to mention that the session-user pair is stored in Synchro-
nizedMap to avoid the synchronization problems described in [subsection 3.4.1.

B Execution and debugging

FR14| Script execution
® Implemented - |[FR14.1, [FR14.2, [FR14.3| [FR14.4} [FR14.5
® Partly implemented - |F'R14.6
® Not implemented - [FR14.7, FR14.8

The list of the executions(FR14.1) is shown in Figure 7.8. The execution
report (FR14.2)) and the execution and listing of the function (FR14.5, FR14.4)
is located on the left side labeled as Function call in[7.2l and button Ezecution
report. The execution input/output (FR14.3) can be downloaded via the
report.

The status of the execution (FR14.6)) is visible if the execution is finished
without an error; however, if the execution fails due to a fatal error, the
execution can not be written in the database. More robust writing of the
execution logs is required in the SPipes engine.

The flow of the execution is shown in [Figure 5.2 The implementation
is straightforward - the SPipes backend calls the function execution with
parameters via the SPipes engine. When the execution is complete, the engine
logs the data to RDF4J.

FR15| Module execution
® Implemented - |[FR15.1} [FR15.2, [FR15.3, [FR15.4

® Not implemented - |FR15.5

86

7.3. Requirements implementation

S-Pipes Ul Scripts Executions
Executions
Status Name Started Finished Duration Action
[hello-world-example-0.2 22.04.2021 - 00:24:14 22.04.2021 - 00:24:15 281ms = [>]
- hello-world-example-0.3 02.06.2021 - 22:58:27 02.06.2021 - 22:58:28 834ms = (-]
w» hello-world-example-0.3 03.06.2021 - 18:16:53 03.06.2021 - 18:16:54 736ms r4 [»]

Figure 7.8: List of executions

The module input/output from a execution is visible via the Figure 7.7 by
clicking on the info icon. The left one is for the input and the right one for
the output. Variable assignments are located on the left side in [Figure 7.2
labeled as Variables info. It provides a piece of quick information about
the assigned variables and what was executed. The module input and the
parameters could be edited, and the module could be debugged.

Indirect module execution is not implemented because of the missing
functionality on the SPipes engine part. However, the necessary preparation
on the Ul side is complete.

B Validation
FR17 Script integrity constraints
8 Implemented - |[FR17.1} [FR17.2, [FR17.3

The list of the best practices is shown in [Table 7.1 The rules are related to
the SPipes language and best practices for writing scripts. The validation
report is shown in |[Figure 7.2/ on the left side as a Validate Report. On
click, the button shows up in the modal window with a list of errors and
it allows the user to navigate the problematic module. The module is also
coloured red for better recognition. The script validation progress is shown
in subsection 6.3.3.

FR18| Module integrity constraints
8 Implemented - [FR18.1
Not implemented - |[FR18.2

The module integrity constraints are merged with best practices for script
writing. The approach is the same as in FR17. The list of the best practices
is also shown in [Table 7.1.

B Others
FR20| Newest version of SPipes library

87

7. Implementation

Best-practise rule Avaliable

ApplyConstruct must have at least 1 sml:constructQuery

Y
with exactly one sp:text value s

Every function has only 1 returnModule, which is type of IRI | Yes

Every module must have rdfs:label Yes
Every property sm:next must reference to sm:Modules No*
Every property sm:nexrt must be terminated by No*
sml:ReturnRDF

Modules can not create a cycle via sm:next No*
Every sml:ReturnRDF must have 1 sml:serialization Yes
Every sml:Bind WithConstant must have 1 sml:value Yes

Every sml:Bind WithConstant must have 1 sm:outputVariable | Yes

Table 7.1: Best practise to write SPipes language and custom best-practice
rules to write scripts. The x is out of scope SHACL validation

Implemented - FR20.1
8 Partly implemented - [FR20.2

This functionality has been implemented; however, it turns out that the latest
version of the SPipes modules may not always be compatible with the current
version of the scripts. The implemented version always downloads the latest
version when the application starts. The partial implementation of [FR20.2
is because the latest version can be downloaded, but conflicts need to be
resolved. The implementation is in the current_spipes_modules branch.

FR21| System synchronization
#8 Partly implemented - [FR21.1

As stated in [3.4.1], synchronization issues have been taken into account.
FR13| uses SynchronizedMap to avoid unexpected states. Furthermore,
complex Jena-related operations are handled by Jena Transactions API®.
The requirement is marked as partially implemented because synchronization
is very difficult to test, so it is not certain that all cases have been covered.

B 7.3.2 Implementation of Non-functional Requirements

All of the non-function requirements are taken into consideration during
development because all of them are marked as Must have except NFR12.
This section briefly summarizes the status of the requirements.

Logging

Shttps://jena.apache.org/documentation/txn/transactions_ api.html

88

7.3. Requirements implementation

® NFR1 System logs all of the events via the SLF/J’ library.
Localization

m [NFR2 All of the parts of the Ul are in English language.
Configuration

INFR3| The configuration is achieved via the [7.2|

Licensing

8 [NFRA4 All of the libraries meet the license conditions.

Compatibility and portability

8 NFR5| Ul is working on Mozilla Firefox version 89, Chrome version 91.
Further the display on tablet and monitor is supported.

® NFRG6 The newest technologies were introduced in |section 6.2.

Maintainability

8 NFR7 This requirement is explained in chapter 8. Testing is a vital part
of the application, so it was taken care of throughout the development.

® NFRS The user testing is performed in |chapter 8 based on defined
scenarios.

® NFR9 The containerization is discussed in isection 7.2 and it was devel-
oped during the developement process.

Performance

® NFR10| During the development, more than five requests were sent to
simulate the behavior of multiple users.

® NFR11| All of the methods are implemented in efficient way, so the
performance is not problem.

Deployment

8 NFR12| The deployment of the application is described in [section 7.2

“http://www.slf4j.org/

89

90

Chapter 8

Testing and Evaluation

This chapter describes and summarizes the final quality of the unit tests
of the application. Further, the browser testing of the editor is introduced.
Next, user testing is prepared with the predefined scenarios, evaluation,
duration of the testing process and summarizes findings from the users. The
next part is devoted to a comparison with the original SPipes editor. The
comparison firstly compares the implementation differences; secondly, the
features between are compared.

B s.1 Testing

As stated in the original work, there was not enough time for testing [104].
The topic of tests is also discussed in [section 3.3. The new editor tries to
follow the principles of Test-driven development (an approach to software
development where test cases are created to specify and verify what the code
will do [57]) and have the written code tested. Testing is primarily focused
on the server side of the application.

The React part of the application is not tested due to time constraints and
lack of experience with the React framework on the author’s side.

This section discusses the quality of unit tests, browser testing in different
browsers, and various devices. In the last part, the user testing with its
evaluation is described.

B 8.1.1 Unit tests

The term unit test in the context of information technology refers to the
automatic testing and verification of the functioning and correctness of the
system implementation [37].

The NFR7 requires unit tests that will cover at least 75% of the server
part of the application. However, it is not simple to choose the methodology
for the evaluation. The metrics are based on Class, Method or Line coverage
[35]. Moreover, more complex methods such as pairwise testing, also known
as all-pairs testing, is possible [51]. The selected one is Line coverage, which
is the percent of lines executed by this test run.

91

8. Testing and Evaluation

The final test result is displayed in The average of the tested
lines is 62%; however, without the model package it is slightly more than 77%.
The model package is used to access the persistence layer or data transfer
classes. This points to the problem of the line coverage methodology, where
the developer is forced to write a test just to have line coverage. These classes
do not need to be tested.

Figure 8.1: Test coverage

Bl 8.1.2 Browser testing

As stated in the application will offer a responsive user interface
adapted for display on tablet devices and desktop computers. The UI is
tested on Ubuntu 20.10 in following browsers Google Chrome 91.0.4472.77
and Mozilla Firefor 90.0. The width is set to 1600px, and everything is
working as expected in both browsers. The table of tested browsers is shown
in

Further, the application is tested via the Chrome developers toolﬂ which
enable mock tablet. The selected table is iPad Pro, which is working as
expected.

Device | OS Browser Width | Supported
PC Ubuntu 20.10 | Google Chrome 91 1600px Yes
PC Ubuntu 20.10 | Mozilla Firefox 90.0 | 1600px Yes
Mobile | Ubuntu 20.10 | Google Chrome 91 1024px Yes

Table 8.1: Browser support

B 8.1.3 User testing

This section describes the selected users for testing. Further, the scenarios for
testing are presented. The last part collects answers from the participants.

B Selected users

The information about the participants is shown in [Table 8.2. The following

list explains information in a table:

"https://developer.chrome.com/docs/devtools/device-mode/

92

8.1. Testing

® High education includes the participants with bachelor or higher degrees.
® The Ontology knowledge and Coding skill has the following options:

None - The None level of ontology knowledge or coding skills means
that participants do not know anything about the domain.

Basic - The Basic level represents the junior level in the domain.
Participant knows basic of some programming language and knows
basic about the semantic web.

High - The High level represents rich practical experiences in the
domain.

® Job describes the background of the participant profile. If the Private is
filled, the participant does not wish to answer.

8 The Installation has two options:

Prepared - The running instance of SPipes editor is prepared on
the author’s computer

Own - Participant runs own instance following the guide in |Ap{

pendix B
Education Ontology Cc.)dlng Job Installation
knowledge | skill
PO | High Basic None Private Prepared
. Ph.D. student of
P1 | High None None VSCHT Prepared
. . . T-mobile full-stack
P2 | High Basic High developer Prepared
P3 | High Basic High Ataccama full-stack Own
developer
Table 8.2: Participants profile
B Introduction

Before the testing process the basic information about SPipes editor is
explained to participant.

The tested application is an editor for developing and debugging SPipes
scripts. As you can see, an example of such a script on [Figure 8.2]is visualized
as a graph in the right part of the image, and it contains the critical component
for use called Pipeline. This Pipeline defines a transformation process that is
composed of Modules. The Module can be added by added via the left menu
or edited by right-clicking on the Module. Each Module could have an input
Module and output Module that can be added with the left mouse button.
Based on Module types, the functionality is defined. Further, the editor has
the validation rules for the Pipelines and Modules creation.

Unfortunately, the documentation for the individual modules is not avail-
able; though, for test scenarios, you will suffice with the following modules:

93

8. Testing and Evaluation

® BindWithConstant - Binds data to variable
® ApplyConstruct - Execute SPARQL query
® ReturnRDF - Return data in desired format

The Pipeline contains functions that can be run. The function call is called
Execution. The Executions page shows information about Execution, such as
start time, the name of the called function, etc. Execution can be opened,
and the inputs and outputs of individual modules can be checked. Further,
the user can modify the module properties. It is possible to debug modules
using this procedure.

S-Pipes Ul Scripts Executions

Nodes count: 4
Add module hello-world3.sms.ttl

Add module - Bind person name

Function call
Call function -

Graph render strategy Bind person id
TopBottom - [o

Execution report

Manage script's ontology Construct greeting
L o

Validate Report

Variables info
_pld: execute-greeting Return greeting statement
firstName: Robert i

lastName: Plant

personName: Robert Plant

Figure 8.2: Hello-world3.sms.ttl script execution detail

B Test scenarios

The scenario is designed as an introductory task for the beginning user.
Participant should be able to execute the function and check the execution
output.

TC1 Hello world scenario

1 Open hello-world3.sms.ttl script
2 Change render strategy

94

8.1. Testing

Call the function execute-greeding
Fill up the firstName and lastName and submit form
Select your execution

Check if you input variables are firstName="YOUR-VALUE"
and lastName="YOUR-VALUE"

S Ot W

7 Download the input and output of Return greeting statement
module

8 Check if the output of the execution is in JSON-LD format
and the output message is Hello Your Name
The scenario shows validation and work with modules.

TC2 Validation scenario

Open hello-world2.sms.ttl script
Collapse hello-world2.sms.ttl

Open validation report

Select problematic modules and fix them

Delete module with Empty-bind-constant label

S Ot e W N =

Add new module of type Bind with constant with label,
outputVariable and value

N

Add edge from your new module to Construct greeting
8 Delete module with Bind person name

9 Update Construct greeting to consume variable from new
module

10 Call the function execute-greeding
11 Download the input and output of Return greeting statement
module
The scenario shows the possibility of debugging.

TC3 Debug scenario

1 Open hello-world.sms.ttl script
2 Execute the execute-greeding
3 Check the execution report

4 Fix the Construct greeting module to return you Hello
VARIABLE

5 Execute the execute-greeding

95

8. Testing and Evaluation

B Post scenario questions

® Which steps in the test scenarios were not apparent what you were
looking for the longest?

PO

P1

P2

P3

- The question for ' TC1|in steps 4 and 5 was asked quite incorrectly
because I first called the execution and only then entered the
parameters and started.

- I was puzzled in scenarios 2 and 3 and had to ask for help in both.
In fact, [TC3| seemed impossible to me because I don’t know the
required programming language, and I don’t know the terms as a
variable.

- I found the TC3|scenario very difficult, as it was necessary to work
with a module that required knowledge of the SPARQL language,
which I have only seen; however, I never work with it.

- I was a little confused when working with modules. The knowledge
or SPARQL was required at [TC3|, but the solution was the same
as in [T'C1] so it was a simple task.

® What do you think about the application? You can rate it from 0 to 10,
where the 10 is top grade.

PO

P1
P2

P3

- With good documentation, the app could be used. The rating of
the app is 6 out of 10.

- I did not enjoy the testing process, so I abstain.

- I guess the application is focused on SPipes scripts developers. As
I am not a script developer, it is hard to rate it; thus, I give it 5.

- I really enjoy it - 9/10!

® Do you have any real case scenario for the application?

PO

P1

P2

P3

- With this application, I see a fundamental problem with the need
to know the basic programming concepts, including knowledge of the
SPARQL language. Another tricky part is the individual modules,
which require knowledge. So I can’t think of any scenario. I do not
want to go into intense detail; however, the RDF technologies suffer
from a lack of popularity and significant divergence from popular
technologies.

- Honestly no. I guess the application requires programming and
domain knowledge.

- If T understand the application correctly, it is actually the ETL
editor, where the individual modules define the transformation.
It seems interesting to me, but the actual usage would be pretty
challenging. Using the tool would be relatively complex for an
inexperienced user, and for the programmer, it is a minimal tool.

- I hope, if some training with the application expert will be provided
to users, the application could be beneficial.

96

8.1. Testing

B 8.1.4 User testing evaluation

This section describes the severity of the problems found. It also tells how
long it took the participants to go through the scenarios and finally discuss
the discovered issues.

Severity of the findings

® High - The problem severity is critical and significantly limits the usage
of the application. The finding should be fixed immediately.

8 Medium - The problem limits the usage of the application; however, it is
still possible to fulfill the task. The finding should be fixed as soon as
possible.

8 Low - The problem does no limit the application usage. It is typically
the visualization problem. The finding should be fixed later.

B Duration

The duration is measured from the introduction of the application. It resulted
in answering the questionnaire, which was not included in the total time.
The average time was 58m. It is important to comment on the remarks on
PO and P3. PO was a bit biased because the participant saw the application
before, and the difficulty of the scenarios was consulted with him. P3 had
problems because the participant forgot how to use Docker, but he wanted
to try the installation of the application. It was successful; however, the
Docker itself added 45m to the duration. The participant still needed to
figure out the configuration for the Docker itself and the necessary variables.
The configuration of the Docker is shown in the duration column in brackets.
The final duration of every participant is shown in [Table 8.3.

Participant | Duration
PO 30m

P1 84m

P2 56m

P3 53m+(45m)

Table 8.3: Scenarios duration for every participant

B Findings
F1 Multiple modal windows opened at once.

® Severity - High
® Found by participant - PO

® Found in test scenario - |TC1

97

8. Testing and Evaluation

Description - If the participant opened the modal window and
wanted to close it and open another, the previous opened still
appear. It has to fix immediately, and it was no longer issue for
other participants.

F2 Spelling problem execute-greeding

Severity - Low
Found by participant - PO
Found in test scenario - [TC3

Description - The label of the module had a spelling problem,;
instead of execute-greeding it should be execute-greeting.

F3 The bitcoin icon is used for module type of BindWithConstant.

Severity - Low
Found by participant - PO, P1, P2, P3

Found in test scenario - [TC1

Description - The icons were chosen randomly from Font Awesome?

library. The icon will be changed after testing.

F4 The execution of the function is not convenient.

Severity - Medium
Found by participant - PO
Found in test scenario - T'C1

Description - The parameters for the execution were not suggested
and had to fill as a text value. It was fixed immediately after PO
testing for more friendly usage of the editor.

F5 Function form submit button text.

Severity - Low
Found by participant - PO, P3
Found in test scenario - All

Description - If the user wants to execute a function, the submit
keyword is Debug instead of Submit or Execute.

F6 Order of the list of executions.

Severity - Low
Found by participant - PO, P2, P3
Found in test scenario - All

Description - The last executed execution is at the end of the list.
The list of the execution should start with the newest one.

*https:/ /fontawesome.com/

98

8.1. Testing

F7 Only the part of the execution input/output is downloaded.

B Severity - Medium
® Found by participant - PO
® Found in test scenario - 'TC1

B Description - When the user downloaded, the execution input or
output of the prefixes was not downloaded. It was fixed immediately
after PO testing for more friendly usage of the editor.

F8 Cytoscape BirdEye overlap modal window.

B Severity - Low

® Found by participant - PO, P2

® Found in test scenario - All

® Description - The CSS z-indea?| property of BirdEye component
is not correctly setup.

F9 Adding edge from module to file group is possible.

Severity - Low
Found by participant - P0, P2

Found in test scenario - ' TC3

Description - Users can connect the module with the module
group(the file name), and the edge is rendered. This action has only
a visualization effect, and it does not affect the script; however, it
should be forbidden.

F10 Bad execution name is rendered.

B Severity - Medium

Found by participant - P2, P3

#® Found in test scenario - 'TC3

B Description - Bad execution name if more than five execution is
in the list of executions.

F11 Execution of corrupted script.

B Severity - Medium
® Found by participant - P1
® Found in test scenario - ' TC2

® Description - SPipes engine returns a Server error(500), when the
user executes the corrupted script. The participant created a script,
which did not make sense, and ran it. The SPipes engine returned
a Server error, and it does write enough data about the execution.

3https://www.w3schools.com/cssref/pr_pos_z-index.asp

99

https://www.w3schools.com/cssref/pr_pos_z-index.asp

8. Testing and Evaluation

F12 Prefix of new added module

B Severity - Low
Found by participant - PO, P2, P3
® Found in test scenario - ' TC2

® Description - The editor suggests the URI of the new module
with prefix |http: //example. com/ change_|; however, a more con-
venient prefix would be the script prefix.

B Summary

All participants were able to complete the test scenario; however, P1 needed
quite a lot of assistance. It should be noted that none of the participants
were in the role of script developer (defined in jsubsection 5.2.4), which
requires knowledge of SPipes module types and SPARQL language. From
the responses to the test scenario, it is evident that the participants had
the most difficulty with the TC3| scenario. In addition, participants had
difficulties with the SPARQL language. The High severity problems were
removed immediately after PO and the Medium and Low severity findings
will be removed in the future.

N 8.2 Comparison with original SPipes Editor

The new editor re-implements the original editor, trying to keep the original
functionality and add a new one. The main goal of the re-implementation
was to simplify development for developers, add tests, and fix bugs. The new
functionality mainly focuses on advanced features to manage SPipes scripts.
This section compares the implementation and the characteristics of new and
original editors.

B 8.2.1 Implementation Comparison

Based on the analysis in [chapter 3, we decided that the project will no
longer be developed in the Scala language, as it did not bring any benefits.
Another important change was replacing the Spring framework with Spring
Boot, which will allow easier development. Furthermore, for the sake of
sustainability, it is necessary to implement tests in the application. The
analysis shows that a significant part of the declared functionality does not
work and it is highly challenging to fix it without the tests. Another problem
presents the used graphics library, which is no longer developed and does
not support the new functionality. Based on the |chapter 4] analysis, the
Cytoscape.js library is selected, which has the necessary features.
Application development is also truly problematic. Both editors depend on
other services (SPipes engine and RDF4J) that they need to be configured.
This topic is not handled in the original editor, but the new editor introduces

100

http://example.com/change_

8.2. Comparison with original SPipes Editor

dockerization of the project. Dockerization will help with the launch and
proper configuration of all services and will simplify future deployment.

The last significant change is the separation of the front-end part of the
application into a separate project to decrease the coupling of the application.
The table with the implementation comparison is shown in [Table 8.4l

Original Editor | New Editor

Programming language | Scala Java

Platform Web Web

Application framework | Spring Spring boot

Visualization library The Graph Cytoscape.js
Editor

Front-end framework React React

Tests No Yes

Dockerized No Yes

Fron.t—en'd as standalone No Ves

application

Table 8.4: Implementation comparison between original and new SPipes Editor

B 8.2.2 Features Comparison

The new editor first tries to fix bugs in the original application and focuses on
the new functionality. It re-implements all the features of the original editor,
except support for display on a mobile device, but it has been marked as non-
essential. The main problem with the original editor was not working, adding
and editing modules, which are vital to the operation of the application. This
functionality has been fixed and re-implemented.

The next step was to add a script function call, which would enable
debugging. Due to this requirement, Docker was introduced; thus, the
integration of all services would be facilitated. Execution can then be traversed
and debugged with the help of repeated start-ups or mocking the module
input. Unfortunately, due to lack of time, the run part of the pipeline for
indirect execution of the module was not implemented, which would further
facilitate the debugging.

In addition to the original editor, SHACL validation has been added to
help prevent errors and introduce the best practices for writing the scripts.

Thanks to Cytoscape, better visualization adjustments could be made,
such as collapsing, which supports better orientation in larger graphs. The
framework also allows for better navigation and scripting and will enable you
to label corrupt modules.

The table with the full comparison is shown in [Table 8.5

101

8. Testing and Evaluation

Functionality Original Editor | New Editor
Script creation No Yes
Script visualization Yes Yes
Module'}s grouping and No Ves
collapsing

Multiple layout algorithms Yes Yes
External change notification Yes Yes

Add new module Partly Yes
Module parameter value adjustment Partly Yes
Script execution No Yes
Script debugging No Yes
Show the graph overview Yes Yes
Collapsing based on module membership | No Yes
Collapsing respects hierarchy of files No Designed
List execution history No Yes
Query execution history No Yes
Multiple user editing Yes Yes
Mobile visualization Yes No
Tablet visualization Yes Yes
Manage script imports No Yes
Transfer module to related script No Yes
General transfer of module No Designed
Module execution No Yes
Module debug No Yes
Indirect module debug No Designed
Script and module validation No Yes
Execution report No Yes
Module execution parameters No Yes

visualizaiton

Table 8.5: Original and new SPipes editor functions comparison

102

Chapter 9

Conclusion

B a1 Summary

This thesis aimed to provide a new implementation of the editor for SPipes
scripts or extend the original editor. Based on the detailed analysis, we
decided for re-implementation. The benefits of the re-implementation are
manifold. Let us name the major ones, that can be considered as an original
contribution to the topic by the author. It needs to be highlighted that all
the objectives that were set out in the thesis guideline have been fulfilled
completely.

First, the backend part was rewritten from Scala to Java based on a
detailed analysis of related problems. Rewrite eliminated issues stemming
from intricate compatibility issues between Scala and Spring framework in
the original editor.

Great deal of effort was put into testing of the application and providing
tests for individual components of the application. This aspect was largely
neglected previously, which was intertwined with hidden bugs in the original
implementation. Apart from the revelation of such errors, it also guards
against unintentional changes in the behavior of the application during the
future development. Further, the deployment process and rather complex
configuration of all the parts of the editor was simplified significantly with
introduction of Docker and definition of components and their communication
via a docker-compose configuration file.

In terms of new provided functionality, the possibility to validate and debug
scripts and modules were added as well allow to create a comprehensive view
on large and complicated scripts. Validation of the scripts and modules, as
implemented in this work, brings a striking improvement of the work with
semantic data in the SPipes language.

For future development of the editor, the focus could be put on aspects
that would further make adoption of its use easier, not only for the end users
but also for developers. Thus, the focus could be put on extension of the
list of best-practices for module/scripts validations, proper documentation of
every module type and its constraints. From the developers view, it could
be beneficial to implement tests for the frontend part that would give the
developer larger confidence that changes made due to the addition of new

103

9. Conclusion

functionality would not break existing behavior of the editor.

104

Appendix A
Code Attachments

version: '3.7'

services:
s-pipes-editor-ui:
image: 'chlupnoha/s-pipes-editor-ui:latest’
ports:
- '3000:80"'
networks:
- overlay
depends_on:
- s-pipes-editor-rest
environment:
SERVICE_URL: "s-pipes-editor-rest:18115"

s-pipes-editor-rest:
image: 'chlupnoha/s-pipes-editor-rest:latest'
container_name: s-pipes-editor-rest
ports:
- '18115:18115"
expose:
- "18115"
networks:
- overlay
depends_on:
- s-pipes-engine
- rdf4j
environment:
- SCRIPTPATHS=####
- ENGINEURL=http://s-pipes-engine:8080/s-pipes/
- SCRIPTRULES=####
- RDF4J_REPOSITORYURL=http://rdf4j:8080/rdf4j-server/rep
- RDF4J_REPOSITORYNAME=s-pipes-hello-world
- RDF4J_PCONFIGURL=####
volumes:

105

A. Code Attachments

- /tmp:/tmp
- /home:/home
- /usr/local/tomcat/temp/:/usr/local/tomcat/temp/

s-pipes-engine:
image: 'chlupnoha/spipes-engine:latest'
container_name: s-pipes-engine
ports:
- "8081:8080"
expose:
- "8081"
networks:
- overlay
depends_on:
- rdf4j
environment:
— CONTEXTS_SCRIPTPATHS=####
volumes:
- /tmp:/tmp
- /home: /home
- /usr/local/tomcat/temp/:/usr/local/tomcat/temp/

rdf4j:
image: 'eclipse/rdf4j-workbench:amd64-3.5.0'
container_name: rdf4j
ports:
- '"8080:8080"
expose:
- "8080"
networks:
- overlay
environment:
- JAVA_OPTS=-Xmslg -Xmx4g
volumes:
- data:/var/rdf4j
- logs:/usr/local/tomcat/logs

volumes:
data:
logs:

networks:
overlay:

Listing 19: SPipes editor Docker compose

106

Appendix B

Installation guide
The recommended installation of the SPipes editor is via the Docker.

. B.1 Installation via Docker

1. Install Docker https://docs.docker.com/get-docker/|

2. Clone project git clone https://github.com/chlupnoha/s-pipes-editor-ui
for newest version or s-pipes-editor-ui from the attachment. To
obtain the testing data it is recommended to clone the git clone
https://github.com/chlupnoha/s-pipes-editor or use s-pipes-editor
from the attachment.

3. Open docker-compose.yml and adjust the parameters to respect your
configuration. The explanation of the parameters is described in README . md.
The sample data are part of the project
s-pipes-editor/src/test/resources/scripts_test/sample so you
can use this data. The important variables are the following ones:

a. SCRIPTPATHS - Location of the scripts for s-pipes-editor-rest.
b. SCRIPTRULES - Location of the rules for s-pipes-editor-rest.
RDF4J_PCONFIGURL - Configuration of RDF4J for spipes-engine.

d. CONTEXTS_SCRIPTPATHS - Location of the scripts for spipes-engine.

@

4. Execute docker-compose up.

5. Unfortunately, JOPA requires a repository at the application startup;
thus, you have to open http://localhost:8080/rdf4j-workbench|and
create a new repository, which is the same as RDF4J_REPOSITORYNAME.
The default one is s-pipes-hello-world.

6. Kill docker-compose process and execute docker—-compose up again.

7. Open http://localhost:3000/|

107

https://docs.docker.com/get-docker/
http://localhost:8080/rdf4j-workbench
http://localhost:3000/

108

Appendix C

Attachment

/

| thesis.pdf ... this thesis

| _thesis ...oiiiiiiiiiii... the source files of this thesis in BTEX
17 PP figures
775 content files
COAE vttt e e code attachments
zav_prace.pdf i, thesis assignment

=Y o T Application files
s-pipes-editor il SPipes editor
s-pipes-editor-uiol SPipes editor Ul

109

110

Appendix D
Bibliography

[1] Angus Addlesece. Understanding Linked Data Formats.
|/ /medium.com/wallscope/understanding-linked-data-formats|
(Accessed on 2021/06/08).

[2] Alvin Alexander. Scala cookbook. O’Reilly, Sebastopol, CA, 2013.

[3] Francesco Antoniazzi and Fabio Viola. Rdf graph visualization tools: A
survey. In Proceedings of the 23rd Conference of Open Innovations As-
sociation FRUCT, FRUCT’23, Helsinki, Uusimaa, FIN, 2018. FRUCT
Oy.

[4] Apache Jena - Apache Jena SHACL. https://jena.apache.org/
documentation/shacl/index.htmll (Accessed on 2021/06/20).

[5] ArangoDB, the multi-model database for graph and beyond.
//www .arangodb.com/} (Accessed on 2021/06/11).

[6] Ken Arnold, James Gosling, and David Holmes. Java(TM) Program-
ming Language, The (4th Edition). Addison-Wesley Professional, 2005.

[7] Howard Austerlitz. Computer programming languages. In Data Acqui-
sition Techniques Using PCs, pages 326—360. Elsevier, 2003.

[8] Baeldung. A comparison between spring and spring boot. https://www

baeldung.com/spring-vs-spring-boot, journal=Baeldung. (Ac-
cessed on 2021/07/15).

[9] Baeldung. Custom Error Message Handling for
REST API | Baeldung. https://www.baeldung.com/
jglobal-error-handler-in-a-spring-rest-apil. (Accessed on
2021,/06/09).

[10] Baeldung. Integration testing in spring. https://www.baeldung.com/
lintegration-testing-in-spring. (Accessed on 2021/07/15).

[11] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An
open source software for exploring and manipulating networks. 2009.

111

https://medium.com/wallscope/understanding-linked-data-formats
https://medium.com/wallscope/understanding-linked-data-formats
https://jena.apache.org/documentation/shacl/index.html
https://jena.apache.org/documentation/shacl/index.html
https://www.arangodb.com/
https://www.arangodb.com/
https://www.baeldung.com/spring-vs-spring-boot
https://www.baeldung.com/spring-vs-spring-boot
https://www.baeldung.com/global-error-handler-in-a-spring-rest-api
https://www.baeldung.com/global-error-handler-in-a-spring-rest-api
https://www.baeldung.com/integration-testing-in-spring
https://www.baeldung.com/integration-testing-in-spring

D. Bibliography

[12]

[13]

Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk
Nielsen, and Arthur Secret. The world-wide web. Commun. ACM,
37(8):76-82, August 1994.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The
story so far. International Journal on Semantic Web and Information
Systems (IJSWIS), 5:1-22, 01 2009.

Nikolaos Bourbakis. Artificial intelligence and automation. World
Scientific, Singapore River Edge, NJ, 1998.

Richard Brath. Graph analysis and visualization : discovering business
opportunity in linked data. John Wiley & Sons, Indianapolis, IN, 2015.

Kevin Brennan. A guide to the Business analysis body of knowledge
(BABOK guide. International Institute of Business Analysis, Toronto,
2009.

A Brief History of Scala. https://www.artima.com/weblogs/
viewpost.jsp?thread=163733 (Accessed on 2021/06/09).

Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engi-
neering Using UML, Patterns, and Java. Prentice Hall Press, USA, 3rd
edition, 2009.

Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio.
Lodlive, exploring the web of data. In Proceedings of the 8th Inter-
national Conference on Semantic Systems, -SEMANTICS ’12, page
197-200, New York, NY, USA, 2012. Association for Computing Ma-
chinery.

Charalampos C. Charalampidis and Euclid A. Keramopoulos. Seman-
tic web user interfaces — a model and a review. Data € Knowledge
Engineering, 115:214-227, May 2018.

Helen Cook, Nadezhda Doncheva, Damian Szklarczyk, Christian von
Mering, and Lars Jensen. Viruses.string: A virus-host protein-protein
interaction database. Viruses, 10:519, 09 2018.

Mahboubeh Dadkhah, Saeed Araban, and Samad Paydar. A systematic
literature review on semantic web enabled software testing. Journal of
Systems and Software, 162:110485, April 2020.

Eclipse RDF4J developers. Welcome - Eclipse RDF4J™ | The Eclipse
Foundation. https://rdf4j.org/. (Accessed on 2021/06/11).

Best Graph Database - Native GraphQL Database. |https://wuw|
dgraph.io/. (Accessed on 2021/06/11).

dotnetrdf/dotnetrdf. https://github.com/dotnetrdf/dotnetrdf,
June 2021. (Accessed on 2021/06/20).

112

https://www.artima.com/weblogs/viewpost.jsp?thread=163733
https://www.artima.com/weblogs/viewpost.jsp?thread=163733
https://rdf4j.org/
https://www.dgraph.io/
https://www.dgraph.io/
https://github.com/dotnetrdf/dotnetrdf

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

D. Bibliography

Martin Fowler. UML distilled : a brief guide to the standard object
modeling language. Addison-Wesley, Boston, 2004.

Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur Sumer,
and Gary D. Bader. Cytoscape.js: a graph theory library for visualisa-
tion and analysis. Bioinformatics, page btvb57, September 2015.

Jeff Friesen. Are checked exceptions good or
bad? https://www.infoworld.com/article/3142626/
are-checked-exceptions-good-or-bad.html, = November 2016.
(Accessed on 2021/06/09).

Tan Gorton. Essential software architecture. Springer, Berlin Heidelberg
New York, 2011.

Graphlytic - Graph Analytics And Visualization Software. https:
//graphlytic.biz/. (Accessed on 2021/06/13).

GraphQL | A query language for your API. https://graphql.org/.
(Accessed on 2021/06/11).

Thomas R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199-220, 1993.

Tuukka Hastrup, Richard Cyganiak, and Uldis Boj. Browsing linked
data with fenfire. 369, 01 2008.

Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann,
and Timo Stegemann. Relfinder: Revealing relationships in rdf knowl-
edge bases. In Proceedings of the 4th International Conference on
Semantic and Digital Media Technologies (SAMT 2009), pages 182-187,
Berlin/Heidelberg, 2009. Springer.

Hadi Hemmati. How effective are code coverage criteria? In 2015 IEEE
International Conference on Software Quality, Reliability and Security,
pages 151-156, 2015.

Matthew Horridge. OWL Syntaxes. http://ontogenesis,
knowledgeblog.org/88, January 2010. (Accessed on 2021/06/07).

Dorota Huizinga. Automated defect prevention : best practices in
software management. Wiley-Interscience IEEE Computer Society,
Hoboken, N.J, 2007.

Chapter 11. Interoperability between Scala and Java - Scala
in Action. https://livebook.manning.com/scala-in-action/
chapter-11. (Accessed on 2021/06/09).

Introduction scala. https://docs.scala-lang.org/tour/
tour-of-scala.html. (Accessed on 2021/06/09).

113

https://www.infoworld.com/article/3142626/are-checked-exceptions-good-or-bad.html
https://www.infoworld.com/article/3142626/are-checked-exceptions-good-or-bad.html
https://graphlytic.biz/
https://graphlytic.biz/
https://graphql.org/
http://ontogenesis.knowledgeblog.org/88
http://ontogenesis.knowledgeblog.org/88
https://livebook.manning.com/scala-in-action/chapter-11
https://livebook.manning.com/scala-in-action/chapter-11
https://docs.scala-lang.org/tour/tour-of-scala.html
https://docs.scala-lang.org/tour/tour-of-scala.html

D. Bibliography

[40]

[41]

[42]

[43]

[54]

Iris/rdfconceptsproposal. https://www.w3.org/2011/rdf-wg/wiki/
IRIs/RDFConceptsProposal, Jun 2009. (Accessed on 2021/06/07.

IsaViz Overview. https://www.w3.org/2001/11/IsaViz/. (Accessed
on 2021,/06/09).

Carlo Jelmini. Java interoperability: Kotlin vs Scala. https://jelmini}
dev/post/java-interoperability-kotlin-vs-scala/. (Accessed
on 2021/06/09).

Paramjit Jolly. Big Data — Graph Visualisations. https://medium|
com/Q@jollyp/big-data-graph-visualisations-75f341dc36ec,
November 2018. (Accessed on 2021/06/13).

Java Persistence API (English) — FI WIKI. https://kore.fi.muni!
cz/wiki/index.php/Java_Persistence_API_(English). (Accessed
on 2021/07/11).

JSON-LD 1.1. |https://www.w3.0org/TR/json-1d/. (Accessed on
2021/06/08).

JSON-LD Primer. https://json-1d.org/primer/latest/. (Accessed
on 2021,/06/08).

Junit 5. https://junit.org/junit5/. (Accessed on 2021/06/11).

Ferhat Khendek, Maria Toeroe, Abdelouahed Gherbi, and Rick Reed,
editors. SDL 2013: Model-Driven Dependability Engineering. Springer
Berlin Heidelberg, 2013.

Tomas Klima. Editor sémantickych webovych formulditi. January 2021.

Tomés Knap, Maria Kukhar, Bohuslav Macha¢, Petr Skoda, Jif{ Tomes,
and Jan Vojt. UnifiedViews: An ETL framework for sustainable RDF
data processing. In Lecture Notes in Computer Science, pages 379-383.
Springer International Publishing, 2014.

Rick Kuhn, Raghu Kacker, Yu Lei, and Justin Hunter. Combinatorial
software testing. Computer, 42(8):94-96, 2009.

Layered graph drawing. https://en.wikipedia.org/w/index.php?
title=Layered_graph_drawing&oldid=1024291701, May 2021. Page
Version ID: 1024291701.

Martin Ledvinka and Petr Kfemen. JOPA: Accessing ontologies in an
object-oriented way. In Proceedings of the 17th International Conference
on Enterprise Information Systems. SCITEPRESS - Science and and
Technology Publications, 2015.

Steffen Lohmann, Vincent Link, Eduard Marbach, and Stefan Negru.
Webvowl: Web-based visualization of ontologies. In Patrick Lambrix,

114

https://www.w3.org/2011/rdf-wg/wiki/IRIs/RDFConceptsProposal
https://www.w3.org/2011/rdf-wg/wiki/IRIs/RDFConceptsProposal
https://www.w3.org/2001/11/IsaViz/
https://jelmini.dev/post/java-interoperability-kotlin-vs-scala/
https://jelmini.dev/post/java-interoperability-kotlin-vs-scala/
https://medium.com/@jollyp/big-data-graph-visualisations-75f341dc36ec
https://medium.com/@jollyp/big-data-graph-visualisations-75f341dc36ec
https://kore.fi.muni.cz/wiki/index.php/Java_Persistence_API_(English)
https://kore.fi.muni.cz/wiki/index.php/Java_Persistence_API_(English)
https://www.w3.org/TR/json-ld/
https://json-ld.org/primer/latest/
https://junit.org/junit5/
https://en.wikipedia.org/w/index.php?title=Layered_graph_drawing&oldid=1024291701
https://en.wikipedia.org/w/index.php?title=Layered_graph_drawing&oldid=1024291701

D. Bibliography

Eero Hyvonen, Eva Blomqvist, Valentina Presutti, Guilin Qi, Uli Sat-
tler, Ying Ding, and Chiara Ghidini, editors, Knowledge Engineering
and Knowledge Management, pages 154-158, Cham, 2015. Springer
International Publishing.

[55] Christos Loverdos and Apostolos Syropoulos. Steps in Scala: An
Introduction to Object-Functional Programming. Cambridge University
Press, USA, 2010.

[56] Eva a Zdenék Machackovi. Metoda MoSCoW a model
KANO. https://www.systemonline.cz/rizeni-projektu/
metoda-moscow-a-model-kano.htm. (Accessed on 2021/07/02).

[57] Robert C. Martin. Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall PTR, USA, 1 edition, 2008.

[58] Mark A. Musen. The protégé project: a look back and a look forward.
AI Matters, 1(4):4-12, 2015.

[59] THE MVC-WEB DESIGN PATTERN. In Proceedings of the 7th
International Conference on Web Information Systems and Technologies.
SciTePress - Science and and Technology Publications, 2011.

[60] 17.Web ~ MVC framework. https://docs.spring.io/
ispring-framework/docs/3.2.x/spring-framework-reference/
html/mvc.html. (Accessed on 2021/06/11).

[61] nishanil. Co je Docker? https://docs.microsoft.com/
|cs-cz/dotnet/architecture/containerized-lifecycle/
what-is-docker. (Accessed on 2021/07/15).

[62] OWL Web Ontology Language Guide. https://www.w3.org/TR/
(Accessed on 2021/06/08).

[63] James Powell and Matthew Hopkins. Ontologies. In A Librarian's
Guide to Graphs, Data and the Semantic Web, pages 31-43. Elsevier,
2015.

[64] 41Z440 - Propojena data na webu (Vojtéch Svatek). https://nb.vse|
\cz/~svatek/rzzw.htmll (Accessed on 2021/06/07).

[65] RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/
rdf11l-concepts/. (Accessed on 2021/06/07).

[66] RDF 1.1 Primer. https://www.w3.org/TR/rdf11-primer/. (Accessed
on 2021/06/07).

[67) RDF Primer. |https://www.w3.org/TR/rdf-primer/#rdfschemal
(Accessed on 2021/06/07).

[68] RDF Schema 1.1. https://www.w3.org/TR/rdf-schema/} (Accessed
on 2021/06/07).

115

https://www.systemonline.cz/rizeni-projektu/metoda-moscow-a-model-kano.htm
https://www.systemonline.cz/rizeni-projektu/metoda-moscow-a-model-kano.htm
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.microsoft.com/cs-cz/dotnet/architecture/containerized-lifecycle/what-is-docker
https://docs.microsoft.com/cs-cz/dotnet/architecture/containerized-lifecycle/what-is-docker
https://docs.microsoft.com/cs-cz/dotnet/architecture/containerized-lifecycle/what-is-docker
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl-guide/
https://nb.vse.cz/~svatek/rzzw.html
https://nb.vse.cz/~svatek/rzzw.html
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf-primer/#rdfschema
https://www.w3.org/TR/rdf-schema/

D. Bibliography

[69] React — A JavaScript library for building user interfaces.
reactjs.org/, (Accessed on 2021/06/11).

[70] Will Reese. Nginx: The high-performance web server and reverse proxy.
Linuz J., 2008(173), September 2008.

[71] Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web
APIs. O’Reilly Media, Inc., 2013.

[72] Jan Rylich. Technologie sémantického webu. |https://ikaros,
lcz/technologie-semantickeho-webu, October 2011. (Accessed on
2021/06,/07).

[73] s-pipes-modules.git - Gitblit. https://kbss.felk.cvut.cz/gitblit/
'summary/s-pipes-modules.gitl (Accessed on 2021/06/11).

[74] Cloud Object Storage | Store & Retrieve Data Anywhere | Amazon
Simple Storage Service (S3). https://aws.amazon.com/s3/ (Accessed
on 2021/07/13).

[75] SHACL. https://book.validatingrdf.com/bookHtm1011.html)
(Accessed on 2021/06/20).

[76] weso/shaclex. https://github.com/weso/shaclex, June 2021. (Ac-
cessed on 2021/06/20).

[77] SHACL Test Suite and Implementation Report.

github.io/data-shapes/data-shapes-test-suite/| (Accessed on
2021/06/20).

[78] P. Shannon. Cytoscape: A software environment for integrated models
of biomolecular interaction networks. Genome Research, 13(11):2498—
2504, November 2003.

[79] Shapes Constraint Language (SHACL). https://www.w3.org/TR/
(Accessed on 2021/06/20).

[80] Sharp, Austin et al. Janusgraph. https://janusgraph.org/| (Ac-
cessed on 2021/06/16).

[81] Mgr. Linda Skolkovd. Sémanticky web — jak dal? https://ikaros|
\cz/semanticky-web-\T1\textendash-jak-dal, Jun 2009. (Accessed
on 2021,/06/07).

[82] SPARQL Query Language for RDF. |https://www.w3.org/TR/
rdf-sparql-query/. (Accessed on 2021/06/08).

[83] SPARQLMotion. https://sparqlmotion.org/l. (Accessed on
2021/06/08).

116

https://reactjs.org/
https://reactjs.org/
https://ikaros.cz/technologie-semantickeho-webu
https://ikaros.cz/technologie-semantickeho-webu
https://kbss.felk.cvut.cz/gitblit/summary/s-pipes-modules.git
https://kbss.felk.cvut.cz/gitblit/summary/s-pipes-modules.git
https://aws.amazon.com/s3/
https://book.validatingrdf.com/bookHtml011.html
https://github.com/weso/shaclex
https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://janusgraph.org/
https://ikaros.cz/semanticky-web-\T1\textendash -jak-dal
https://ikaros.cz/semanticky-web-\T1\textendash -jak-dal
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://sparqlmotion.org/

D. Bibliography

[84] Basic Spring web application in Java, Kotlin and

Scala - comparison . https://rskupnik.github.io/|
basic-spring-webapp-java-kotlin-scalal (Accessed on
2021,/06/09).

[85] Spring Boot Architecture - javatpoint. https://www. javatpoint.com/
'spring-boot-architecture. (Accessed on 2021/07/20).

[86] Vojtéch Svatek. Ontologie a www. In Sbornik konference Datakon,
pages 27-55, 2002.

[87] Systems engineering fundamentals. US Army Department of Defense,
Washington D.C, 2001.

[88] TopBraid SPARQLMotion Library. https://www.topquadrant|
\com/sparqlmotion/1lib.html#sml:ApplyConstructl (Accessed on
2021,/06/11).

[89] TopQuadrant. Sparqlmotion. https://sparqlmotion.org/images/
Example-SM-Flow.png. (Accessed on 2021/07/20).

[90] Topbraid composer - maestro edition. https://www.topquadrant|
\com/products/topbraid-composer/. (Accessed on 2021/07/20).

[91] TopQuadrant/shacl. https://github.com/TopQuadrant/shacl, June
2021. (Accessed on 2021/06/20).

[92] SPARQLMotion | TopQuadrant, Inc. https://www.topquadrant.com/
‘technology/sparqlmotion/. (Accessed on 2021/06/11).

[93] RDF 1.1 Turtle. https://www.w3.org/TR/turtle/. (Accessed on
2021,/06/08).

[94] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, Inc., USA,
1996.

[95] Akash Verma. Journey from React 15 to Re-
act 16. https://akash-mihul .medium. com/|
|journey-from-react-15-to-react-16-56e336092379, March

2018. (Accessed on 2021/07/13).

[96] W3C. Layer cake. https://www.w3.org/2007/03/1layerCake.png|
(Accessed on 2021/07/20).

[97] W3C. Rdf example graph. https://www.w3.org/TR/rdf11-primer/
lexample-graph. jpg. (Accessed on 2021/07/20).

[98] Craig Walls. Spring Boot in Action. Manning Publications Co., USA,
1st edition, 2016.

117

https://rskupnik.github.io/basic-spring-webapp-java-kotlin-scala
https://rskupnik.github.io/basic-spring-webapp-java-kotlin-scala
https://www.javatpoint.com/spring-boot-architecture
https://www.javatpoint.com/spring-boot-architecture
https://www.topquadrant.com/sparqlmotion/lib.html#sml:ApplyConstruct
https://www.topquadrant.com/sparqlmotion/lib.html#sml:ApplyConstruct
https://sparqlmotion.org/images/Example-SM-Flow.png
https://sparqlmotion.org/images/Example-SM-Flow.png
https://www.topquadrant.com/products/topbraid-composer/
https://www.topquadrant.com/products/topbraid-composer/
https://github.com/TopQuadrant/shacl
https://www.topquadrant.com/technology/sparqlmotion/
https://www.topquadrant.com/technology/sparqlmotion/
https://www.w3.org/TR/turtle/
https://akash-mihul.medium.com/journey-from-react-15-to-react-16-56e336092379
https://akash-mihul.medium.com/journey-from-react-15-to-react-16-56e336092379
https://www.w3.org/2007/03/layerCake.png
https://www.w3.org/TR/rdf11-primer/example-graph.jpg
https://www.w3.org/TR/rdf11-primer/example-graph.jpg

D. Bibliography

[99]

[100]

[101]

[102]

103

[104]

Jim Webber. A programmatic introduction to neodj. In Proceedings of
the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH 12, page 217-218, New York, NY,
USA, 2012. Association for Computing Machinery.

Websocket. https://developer.mozilla.org/en-US/docs/Web/
API/WebSocket. (Accessed on 2021/07/20).

We Love Graphs: JavaScript Graph Drawing Libraries. https:
//anvaka.github.io/graph-drawing-libraries/#!/alll (Accessed
on 2021/06/14).

Why Spring? https://spring.io/why-spring. (Accessed on
2021/07/15).

Roland Wiese, Markus Eiglsperger, and Michael Kaufmann. yFiles
— visualization and automatic layout of graphs. In Graph Drawing
Software, pages 173-191. Springer Berlin Heidelberg, 2004.

Doroshenko Yan. Editor sémantickych datovych proudu. June 2018.

118

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://anvaka.github.io/graph-drawing-libraries/#!/all
https://anvaka.github.io/graph-drawing-libraries/#!/all
https://spring.io/why-spring

	Introduction
	Background
	Ontology
	Semantic Web
	Layers

	RDF
	RDFS
	OWL
	RDF Serialization Formats
	SPARQL

	SPARQLMotion
	SPipes

	The Original State of the SPipes Editor
	Functionality
	Script Editing
	Notifications
	Script Execution

	Implementation of the SPipes Editor
	SPipes Editor Backend
	SPipes Editor Frontend

	Tests
	Backend Tests
	Frontend Tests

	Design Related Issues and Bugs in the SPipes Editor
	Design Issues
	Bugs

	Problems Related to the Scala Language
	Java
	Scala
	Interoperability between Scala and Java
	Scala with the Spring framework
	Issues in Implementation with Spring Framework and SPipes Editor

	Summary of the SPipes Editor Original State

	Review of related technologies
	Graph-based RDF visualization tools
	Visualization tools
	Graph database
	Standalone solutions for data visualization
	Summary

	Data pipeline editors
	Visualization libraries
	Original evaluation criteria
	Original analysis results
	Libraries analysis
	Feature matrix
	Evaluation of the results

	Validation
	SHACL
	SHACL execution engines

	Requirement Analysis
	New SPipes Editor
	Analysis of the SPipes editor requirements
	Prioritization Technique
	Functional Requirements
	Non-Functional Requirements
	Use-cases

	Architecture Design and Technologies
	Application structure
	Server side
	Client side

	Technology stack
	Server side
	Client side

	Design of non-trivial requirements
	Execution
	Debugging
	Script validation
	Modules grouping and collapsing
	Module transfer
	Script to form
	The actual state of the system for multiple users

	Implementation
	Legacy SPipes editor update
	Technology stack update
	Testability
	Development simplification
	UI Layout

	Dockerization of SPipes editor
	Docker and Docker compose
	Containers and Docker compose
	Reverse proxy

	Requirements implementation
	Implementation of Functional Requirements
	Implementation of Non-functional Requirements

	Testing and Evaluation
	Testing
	Unit tests
	Browser testing
	User testing
	User testing evaluation

	Comparison with original SPipes Editor
	Implementation Comparison
	Features Comparison

	Conclusion
	Summary

	Code Attachments
	Installation guide
	Installation via Docker

	Attachment
	Bibliography

