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Abstract

This thesis is focused on selected problems of symmetrical Zolotarev polynomials and their
use in spectral analysis. Basic properties of symmetrical Zolotarev polynomials including
orthogonality are described. Also, the exploration of numerical properties of algorithms
generating even Zolotarev polynomials is performed. As regards to the application of
Zolotarev polynomials to spectral analysis the Approximated Discrete Zolotarev Trans-
form is implemented so that it enables computing of zologram in real–time. Moreover, the
Approximated Discrete Zolotarev Transform is modified to perform better in the anal-
ysis of damped exponential signals. And finally, a novel Discrete Zolotarev Transform
implemented fully in the time domain is suggested. This transform also shows that some
features observed using the Approximated Discrete Zolotarev Transform are a consequence
of using Zolotarev polynomials.

Keywords: Approximated Discrete Zolotarev Transform, Discrete Zolotarev Transform,
Chebyshev polynomials, Zolotarev polynomials, Damped Exponential Signals.

Anotace

Tato práce je zaměřena na vybrané problémy Zolotarevových polynomů a jejich využit́ı
ke spektrálńı analýze. Pokud jde o Zolotarevovy polynomy, jsou popsány základńı vlast-
nosti symetrických Zolotarevových polynomů včetně ortogonality. Rovněž se provád́ı
prozkoumáńı numerických vlastnost́ı algoritmů generuj́ıćıch dokonce Zolotarevovy poly-
nomy. Pokud jde o aplikaci Zolotarevových polynomů na spektrálńı analýzu, je imple-
mentována aproximovaná diskrétńı Zolotarevova transformace, která umožňuje výpočet
spektrogramu (zologramu) v reálném čase. Aproximovaná diskrétńı zolotarevská trans-
formace je nav́ıc upravena tak, aby lépe fungovala při analýze tlumených exponenciálńıch
signál̊u. A nakonec je navržena nová diskrétńı Zolotarevova transformace implemento-
vaná plně v časové oblasti. Tato transformace také ukazuje, že některé rysy pozorované u
aproximované diskrétńı Zolotarevovy transformace jsou d̊usledkem použit́ı Zolotarevových
polynomů.

Seznam kĺıčových slov: Aproximovaná Diskrétńı Zolotarevova Transformace, Diskrétńı
Zolotarevova Transformace, Chebyševovi polynomy, Zolotarevovi polynomy, Tlumené Ex-
ponenciálńı Signály.
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Chapter 1

Introduction

Signal processing is part of our everyday lives today. Many signals are a product of a dif-
ferential system of which the natural world is composed. Character of the differential
system is best captured by spectral characteristics of the produced signal; therefore, spec-
tral analysis plays an important role as a tool to understand and facilitate the natural
world. Straightforward spectral analysis methods are based on Fourier transform (FT).
The FT is well defined for stationary processes. Many differential systems vary their
parameters in time; they are called non-stationary systems. Quality of spectral analysis
based on FT of non-stationary system signals suffers.

One of the possible methods indented for non-stationary signal analysis is Discrete
Zolotarev transform (DZT); however, its spectral coefficient evaluation remains a mys-
tery. The closest possible way to evaluate DZT spectral coefficients is the Approximated
discrete Zolotarev transform (ADZT). ADZT operates in spectral domain, and its basis is
composed of a rather simplified, approximated, Zolotarev polynomial (ZP) spectrum. The
direct evaluation using Zolotarev polynomials can clarify some of the ADZT properties,
of which some are suspected to be a consequence of an Zolotarev polynomial’s inherent
property and other artifacts of the algorithm itself. We believe, it is worth a further
effort to explore the method of direct evaluation of the DZT using ZPs which is the main
motivation behind this work.

1



Chapter 2

State of the Art

Spectral analysis is a field of signal processing, which mainly deals with transformation of
signals between time and frequency domain. One of the main goals is to detect, observe
and possibly extract signal information that cannot be analyzed in time domain. Many
methods have been designed for this purpose in the last 80 year and are now commonly
used in practice. The most widespread are Discrete Fourier Transform (DFT) and its
Short-Term variant (STDFT), Wavelet Transform (WT) and its Discrete form (DWT),
Hilbert-Huang Transform (HHT), Wigner-Ville Distribution (WVD), Principal Compo-
nent Analysis (PCA) and last but not least Approximated Discrete Zolotarev transform
(ADZT) and its short-term variant (STADZT). This chapter aims to map mainly spectral
methods which are based on the DFT. The reason for this limitation is that the Zolotarev
polynomials, forming the basis of Zolotarev transformations, are generalized Chebyshev
polynomials. Analogically, Zolotarev basis in a generalization of Fourier basis and de-
grades to the Fourier one under some conditions. Thus it is reasonable to compare the
Zolotarev transformations mainly to the Fourier ones. The other methods are only briefly
described. More detailed description can be found in stated relevant literature.

2.1 Spectral Analysis Methods

2.1.1 Discrete Fourier Transform

One of the most widespread transforms used for spectral analysis is Discrete Fourier
Transform (DFT). The DFT expresses the relationship between time and frequency do-
main according to the following relation [1]

S(`) = 1
N

N∑
n=1

s(n) exp
(
−j2πn`
N

)
, ` = 1, . . . , N − 1, (2.1)

2



CHAPTER 2. STATE OF THE ART 3

where s(n) is the analyzed discrete signal of a given length N , n denotes the index of
the signal sample and ` is the index of the spectral component. The complex exponential
forms the basis of DFT. The resulting DFT spectrum is composed of spectral coefficients
S(`), which represent frequency bandwidths containing the analyzed signal energy. More
details can be found in [2]. Equation (2.1) can be rewrite into a matrix notation as

S = W s, (2.2)

where S is a column vector containing the individual spectral components, s is the input
signal vector and the matrix W contains the basis functions of DFT.

W =



ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
0·(N−1)
N

... ... . . . ...
ω

(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N

 , (2.3)

where ωN = exp(−i2π
N

).
The DFT is a very good tool for stationary signal analysis. However, difficulties occur

in the case of non-stationary signals, where the analyzed signal spectral properties change
over time. DFT is not able to localize changes in signal spectrum in time. This fact
motivated extensive research which gave birth to a number of methods targeting non-
stationary signal analysis.

2.1.2 Short Time Discrete Fourier Transform

The Short-Time DFT (STDFT) is one of the most widely used spectral methods for the
analysis of a signal with a changing characteristic over time, for example, speech, music,
or various biological and diagnostic signals. The STDFT principle lays in segmentation
of analyzed signal, signal windowing [1], and applying the DFT to particular segments.
This process in described by

S(m, `) = 1
N

N∑
n=1

s(n)w(n−m) exp
(
−j2πn`
N

)
, `,m = 1, . . . , N − 1, (2.4)

where w(n) is the segmentation window, which selects the given signal segment with a
defined length N . The segmentation window selects parts of analyzed signal and it is
gradually shifted in step m samples. The DFT is then applied to each of the signal
segments. The windowing process adds time localization context. Each DFT result of
a particular segment is related to a particular segment shift in time. The result of the
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STDFT is very clearly expressed by a spectrogram which displays the DFT spectral
coefficients in time-frequency lattice.

The frequency and time resolution spectrogram lattice is given by the segmentation
window parameters, the window length and step. The length defines the frequency res-
olution as ∆f = fS

N
, where fS is the analyzed signal sampling frequency, and the step

directly defines the time resolution. The time and frequency resolution is coupled and
mutually constrained, which is an intrinsic segmentation principle property. This prop-
erty is closely related to Heisenberg’s uncertainty principle according to the relation [3]
as

B T0 = constant, (2.5)

where B is the equivalent bandwidth and T0 corresponds to the equivalent length of the
record. Another important aspect is the impact of spectral leakage. Spectral leakage
becomes gradually significant with shortening of window length. The common approach
is to select Hamming window as a weighting window and assume that the frequency
accuracy is half of the frequency resolution given by the lattice. The leakage is reduced
to -41 dB, which is the relative peak side-lobe amplitude of the Hamming window [1].

The uncertainty principle constrains the frequency and time resolution: it is not pos-
sible to achieve better frequency resolution without reduction of the time resolution and
vice versa. Thus one has to find a compromise between time and frequency resolution
for each particular application. A common approach is to the two types of spectrograms
which represent extreme limits of the STDFT resolution. The first type is narrowband
spectrogram where STDFT uses long segmentation window. The long window leads to
fine frequency grid and spectral leakage is also minimized; however, the time resolution
becomes very poor. The second type is broadband a spectrogram which is created using a
very short segmentation window. The short window length leads to high time resolution
but the frequency resolution is poor.

In general, it can be said that DFT and its short-term variant STDFT belong to the
very widespread spectral methods for its simple definition, interpretation, reversibility and
linearity. Another reason advantage is the possibility of a very efficient implementation
using the Fast Fourier Transform (FFT).

There are modifications to STDFT such as Fractional Fourier transform (FRFT),
which generalizes classical FT [4, 5, 6].

2.1.3 STDFT with adaptive time-frequency resolution

The described trade-off between time and frequency resolution of the STDFT is different
for each analyzed signal. Thus the parameter of window length N in (2.4) can be taken
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as parameter to optimize. The adaptive time-frequency resolution methods optimize the
window length in order to minimize the spectrum power fitting best each segment of
analyzed signal. These methods can be found in [7, 8, 9].

Minimum spectral leakage methods

A method used for the analysis of audio signals reaches the best time-frequency resolution
out of the list. This method selects the optimal window length of the segmentation window
based on optimization criteria of spectral leakage energy minimization.

The method calculates DFT for segments of particular shift for all possible lengths.
The minimal window length is selected based on the optimization criterion employing
the principle of the minimum description length principle [10]. The algorithm [7] can be
divided into several steps:

1. Calculation of spectrograms Sr with different window length Nr = 2c, which is
centered around the current sample, and increases symmetrically to the sides with
increasing length. The parameter c is a natural number of interval 〈cmin, cmax〉.
Thus we obtain a set of spectra with different time-frequency resolution, of which
the one that minimizes the leakage energy is selected.

2. Calculation of spectral leakage energy is realized according to relation [7]

Lr(d) =
∑Nr
i=1 Nri |ai,r|2√∑Nr
i=1 Nr |ai,r|2 + ε

, (2.6)

where d is the index of the segment of the r-th spectrogram with the corresponding
window length Nr and ai,r denotes the i-th spectral coefficient of the d-th segment.
The coefficients ai,r must be arranged descending in size. Expression (2.6) represents
the first moment of distribution of variables |ai,r|2 (numerator) normalized by the
total signal energy (denominator). The ε > 0 in the denominator treats any division
by zero.

3. The optimal length of the STDFT window is equal to the length of the spectrogram
window with the least energy spectral leakage Lr.

4. The spectrogram with optimal time-frequency resolution is composed of particular
spectra of different optimal lengths Sr(k).

The advantage of this adaptive method is the clear principle of selecting the window
length, the Fast Fourier transform (FFT) usage and possibility to reverse the signal from
the frequency domain back to the time domain (the optimal window length for each signal
segment must by stored).
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Instantaneous frequency estimation method

The following adaptive method is of Fourier type and selects the STDFT segmentation
window length by estimating the instantaneous frequency pertaining to a segment. The
optimization criterion is confidence interval of instantaneous frequency estimation [9].
The algorithm can be described as follows. First the spectrograms of analyzed signal with
different window lengths are calculated and then the instantaneous frequency ωd(lT,Ns)
is estimated according as

ωd(lT,Ns) = π

NsT
argmax(Sd(l)), (2.7)

where Sd(l) is the power spectrum of the respective segment d, l is the spectral index, T
is the sampling period and Ns is the number of Discrete Fourier transform (DFT) points.
The resulting spectrogram is composed of individual spectra with different time-frequency
resolution. which is achieved by determining the optimal length windows according to
the following conditions

|ωhs−1(lT )− ωhs(lT )| < 2κ (σ(hs−1) + σ(hs)) , (2.8)

where hs denotes the length of the window used to calculate the spectrum and σ is stan-
dard deviation of the employed window. This condition sequentially tests all estimated
instantaneous frequencies for all window lengths until the condition is still valid. If this
condition ceases to be valid, the window length hs−1 is marked as optimal. A more de-
tailed theoretical description of this adaptive spectral method can be found in [9] and
in [11]. The idea of using instantaneous frequency estimation to adaptively adjust the
frequency resolution can also be applied to the Wigner-Ville distribution, as shown in [12].

2.1.4 Wigner-Ville distribution

In addition to spectral methods using the Fourier transform, there are a number of meth-
ods which are very often used in practice for the analysis of non-stationary signals and
achieve very satisfactory results. These methods include the Wigner-Ville distribution
(Wigner-Ville distribution (WVD)), which uses the autocorrelation function of the input
signal. The WVD result is determined by the distribution energy of the analyzed signal
in the time-frequency domain and offers excellent time resolution [13]. This feature is
achieved by not using any weighing window which aggravates frequency resolution and
at the same time limits the time resolution as in Short Time Discrete Fourier transform
(STDFT) or Wavelet transform (WT). The WVD calculation can be performed according
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to the following relation [14].

W (t, f) =
∫ ∞
−∞

z
(
t+ τ

2

)
z∗
(
t− τ

2

)
exp(−j2πfτ)dτ, (2.9)

where z(t) is the analytical signal and z∗(t) is its complex conjugate. Analytical signal
from z(t) is created from the signal s(t) by means of the Hilbert transform (HT) as

z(t) = 1
π
P
∫ ∞
−∞

s(τ)
t− τ

dτ, (2.10)

where P denotes the Cauchy principal value. Frequency spectrum analytical signal is
almost identical to the original signal for frequencies that are positive and non-zero,
otherwise the frequency spectrum is zero. This feature minimizes interference (cross-
terms), which arise between each pair of harmonic components of the analyzed signal [15].
When using an analytical signal, the number of interferences decreases from the original
the number N(2N−1) to N(N−1), where N denotes the number of spectral components
of the signal. The interference may result in inaccurate interpretation of WVD results.
The interference reduction can be achieved by one of the modifications, which seeks to
suppress interference making the result energy distribution in time-frequency domain more
legible.

One of the most frequently used modifications is called Smoothed pseudo Wigner-Ville
distribution (PSWVD), which reduces interference using the time smoothing window h(m)
and the frequency smoothing window g(m). In other words, the window h(m) limits the
length of the analyzed signal and the function g(m) implements a low-pass filter [16]. The
SPWVD can be defined as

W (t, f) =
∫ ∞
−∞

h(τ)
∫ ∞
−∞

g(s− t)z
(
t+ τ

2

)
z∗
(
t− τ

2

)
ds exp(−j2πfτ)dτ. (2.11)

Another and very effective way to reduce interference between the spectral components
of the analyzed signal is to use a ”special distribution core”, which can be imagined
as a 2-D low-pass filter. Among the widely used ”distribution kernels” are the Choi-
Williams functions [13, 17]. All the mentioned modifications leading to the reduction of
the interference of the analyzed signal have the same disadvantage in lower time-frequency
resolution compared to the WVD. Another disadvantage compared to methods based on
the Fourier transform is the inability to reverse transform the analyzed signal. The WVD,
on the other hand offers excellent time resolution and does not suffer from spectral leakage.
In parallel to the STDFT a method reaching optimal window length can be used [18, 12].
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2.1.5 Wavelet Transform

The wavelet transform (WT) is one of the transformations that are very often used for
spectral analysis of nonstationary signals. The principle of this transformation uses the
degree of correlation input signals with a predefined mother wave. Time-frequency anal-
ysis is realized by shifting the mother wavelet in time and changing its effective width
(scale) - so-called scaling. The base of the WT is formed by a scaled mother wave. WT
is further divided into two variants for continuous wavelet transform (CWT) and discrete
wavelet transform (DWT). In general, you can write a relation for CWT as

W (a, b) = w(a)
∫ ∞
−∞

s(t)ψ∗
(
t− b
a

)
dt, (2.12)

where φ
(
t−b
a

)
is a shifted and scaled mother wavelet which must satisfy the following two

conditions: (i) the energy of the ripple must be finite and (ii) its mean value must be
equal to zero. The parameter a scales (dilation) the wavelet and the parameter b shifts
the wavelet in time. Weighing the function w(a) guarantees that the energy of the ripple
is always the same on all scales [19].

The CWT result is represented by a so - called scalogram (scalgram, level diagram),
which shows the mutual energy between the base function CWT and the analyzed sig-
nal in time-scale space. The relationship between time-frequency and time-scale space
must be determined for each mother wave separately and this relationship is expressed
as a = fc

f
, where fc is the unique frequency of each mother wave. The resolution of the

resulting scalogram is also limited by the uncertainty principle (2.5), as is the case with
the spectrogram representing the STDFT result. In contrast to the spectrogram, the fre-
quency resolution in the time and scale domain depends on the frequency characteristics
of used mother waveform and given scale. The CWT frequency resolution decreases with
increasing scale, while the time resolution increases.

There is a number of wavelet functions to choose from, such as the Mexican hat, the
Morlet or Meyer function. Thus it is always necessary to chose best suitable function for
particular analyzed signal.

One of the most efficient spectral methods that was developed during the 1990s years
for the analysis of nonlinear and non-stationary signals belongs to the Hilbert-Huang
transformation (Hilbert-Huang transform (HHT)). This transformation is based on the
modal decomposition of the signal (Empirical Mode Decomposition - EMD), which de-
composes analyzed signals into a set of signals formed by own modal functions (Instristic
Mode Functions - IMF). The modal decomposition of an analysed signal is an iterative
process with a number of conditions that define the IMF components themselves and
control their calculation. A more detailed description of the HHT calculation can be
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found in [20]. The result of decomposition signal is a set of IMF components by which
the analyzed signal can be expressed as

s(t) =
n∑
i=1

ci + rn, (2.13)

where ci is the i-th IMF component and rn is the decomposition residuum after the n-th
iteration. One whole signal is decomposed to the IMFs, the HT (2.10) is applied to each
component. The result is analyzed signal description by the instantaneous frequencies
ω = dθ(t)

dt
, where θ is the phase of the analytical signal. The analyzed signal s(t) can be

expressed as [21]

X(t) =
∞∑
i=1

ai(t) exp
(
j
∫
ωi(t)dt

)
, (2.14)

where ai and ωi represent the instantaneous envelope and frequency of the analytic signal
composed of the i-th IMF component [20]. The envelope and frequency expressed as a
function of time form the Hilbert spectrum H(ω, t) of the analyzed signal. Further details
can be found in [22, 23].

2.1.6 Other Methods

There are a number of robust methods using parametric modeling, least squares methods,
decomposition of a correlation matrix into a signal and noise subspace, methods perform-
ing under L1-norm, L2-norm or infinity norm. Higher order statistics is used as well.
Most of the mentioned methods can be found, for example, in [24, 25, 26, 27].

2.2 Zolotarev Polynomials

ZPs are an important generalization of Chebyshev polynomials. This class of polynomi-
als is equiripple in disjoint interval, and non-equirriple in the complement of the disjoint
interval. Their maximum of absolute value is situated within the non-equirriple interval.
See an example of Chebyshev and Zolotarev polynomials of the first kind in Figure 2.1a
and Figure 2.1b, respectively. Both properties are well suited to approximate FIR fre-
quency response; thus, the polynomials were employed in analytical design of FIR filters
by prof. Miroslav Vlček and prof. Pavel Zahradńık see [28, 29, 30] and also by others
[31]. Aditionally, ZPs were also recently employed for design of circular antenna array [32].
Mentioned features of the ZP inspired an application in spectral signal analysis, which led
to development of an approximated discrete Zolotarev transform, described in the next
section. However, practical utilization of ZP was not possible till recently. The reason was
the absence of a method able to generate ZP of high enough degree, as was emphasized
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in [33].
Symmetrical Zolotarev polynomials are employed in spectral analysis; their generation

is more numerically stable compared to asymmetrical ones. Maximum of absolute value
of a symmetrical polynomial is located at the center, or near it, of the function definition
interval. Short time variant of the transform, where windowing principle is employed, uses
very short analyzing window step. Short window step ensures the central lobe alignment
with all analyzed signal subsegments.

0 0.5π π

−0.5

0

0.5

1

θ

(a) An example of Chebyshev polyno-
mial of the first kind and degree four
with substitution x = cos θ relating to
cosine function.

0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

φ 1

π

2arcos k
′

(b) An example of symmetrical
Zolotarev polynomial of the first kind
and degree four with substitution
x = cos θ. Parameter k′ relates to
the width of the interval with non-
equiripple property.

Figure 2.1: An example of Chebyshev and Zolotarev polynomials, both of the first kind
and forth degree.

2.2.1 A Filter Design Example

Zolotarev polynomials are used for FIR design. Filter’s frequency response is approxi-
mated by the Zolotarev polynomial, and its coefficients are derived. An example of possi-
ble approach to FIR filter design follows. This example was created based on the article
[29]. In general, non-symmetrical polynomials are used in the FIR filter design; however,
this example uses a symmetrical polynomial for simplicity. Symmetrical Zolotarev poly-
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Figure 2.2: FIR filter frequency response based on the symmetrical Zolotarev polynomial
of the first kind ZM(w, k′) for M = 80 and k′ = 0.08 yielding left and right stopband edge
θS1 = 0.4745π and θS2 = 0.5255π, respectively, and stopband ripple δ = −49.7dB.

nomials of the first kind (ZP1S) can form frequency response of a pass band FIR filter
with pass-band around central frequency. A FIR filter transfer function can be written in
general form [1] as

H(z) =
N−1∑
v=0

h(v)z−v, (2.15)

where h(v) is the impulse response, N = 2M + 1 is the filter length and M is the filter
order. The filter transfer function employing ZP1S polynomial is given [28] as

H(z) = z−
M
2

1
A

[
M−1∑
`=0

a(`)T`(w)
]

=

= z−
M
2

1
A

[ZM(w, k′)] ,
(2.16)

where A is the scaling coefficient. By comparing (2.15) with (2.16) the impulse response
can assembled from a coefficients as
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h(2v) = 1
2Aa(M − v),

h(2M + 2v) = 1
2Aa(v),

h(2v + 1) = 0,

v = 0, . . . ,M.

(2.17)

Such an impulse response is even symmetrical and forms a linear phase type I. FIR filter.
The coefficients a(v) are direct output of the backward recursion algorithm [28]. The
variable w in (2.16) is related to the complex variable z by transformation w = 1

2(z+z−1).
The transformation degrades to w = cos(θ) in case of frequency response H(z = ejθ):
w = 1

2(z + z−1) = 1
2(ejθ + e−jθ) = cos(θ). Hence

H(ejθ) = z−
M
2

1
A

[ZM(cos(θ), k′)] . (2.18)

The k′ is a function of θS which is a symmetrical stopband edge. Having in mind the
transformation of w in case of frequency response w = cos(θ) the k′ is simply given as

k′ = cos(θS1), (2.19)

where θS1 is left stopband edge. The stopband ripple is gives as

δ = 20 log10
1
A
. (2.20)

The scaling coefficient A is virtually maximum value of ZP1S. The maximal value is
localized in the center of the polynomial and can be derived from (6.16) by substituting
w = 0 as

A = ZM(w = 0, k′)max =
M−1∑
`=0

a(`)T`(0). (2.21)

The derivation of the degree equation p = f(δ, θS) is out of scope of this paper. The
example of symmetrical pass band FIR filter using ZP1S is in Fig. 2.2. Also a high
pass filter can be formed by discarding zero samples of filter impulse response. A low
pass filter can be easily converted from a high pass one. Various filter types based on
Zolotarev polynomials are described in [30, 29, 34, 28] and others.
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2.2.2 Approximated Discrete Zolotarev Transform

The Approximated Discrete Zolotarev Transform (ADZT) provides high, constant, fre-
quency resolution, given by constant window length and its time resolution is improved
by the basis time selectivity properties. The ADZT was proposed by Dr. Špet́ık in his
dissertation thesis [35] and it is best described in Turoň’s dissertation [36]. Short Time
ADZT (STADZT) [37] is defined in analogy to the STDFT as

SZ(`, n) =
∞∑

m=−∞
s(m)w(m− n) zexp(`, i2πn)

= ADZT {s(m)w(m− n)} (`),
(2.22)

where the window w has a final length of N0 and n is the window offset in samples. The
two dimensional spectrum SZ(`, n) can be displayed graphically as a so-called zologram,
in analogy to spectrogram. The Short Time Approximated discrete Zolotarev transform
(STADZT) spectrum reflects abrupt transitions in signals. Method’s key properties are
summarized in the following list.

• Significantly better time resolution compared to DFT for selected frequency resolu-
tion.

• Significant spectral leakage reduction.

• Side effect of spectral leakage reduction is complete removal of damped exponential
signals from spectra for some signal parameters, which prevents detection of such
signals.

• Transform’s behavior is strongly dependent on analyzed signal shift within analyzed
window; the transform is dependent on analyzed signal phase.

• Sensitivity to analyzed signal envelope energy: for example, in a mixture of two
harmonic signals the spectrum components localized around zeros of beat frequency
envelope are removed.

• Ability to capture analyzed signal non-stationary features is increased with larger
transform length.

• Run time of the transform is relatively large, which prevents practical usage.

Rigorous comparison with the other methods can be found in [36] and similarly in [37,
38, 39, 36].



Chapter 3

Goals of the Thesis

Goal 1 ADZT algorithm runtime optimization

• Evaluate computational demands of the algorithm.

• Design a more efficient algorithm in terms of computational demands.

• Implement the algorithm efficiently to be able to acquire outputs in reduced
time, in real-time if possible.

Goal 2 Transient signals analysis with ADZT

• Based on analysis of ADZT behavior in the analysis of damped exponential
signals, adapt the ADZT to perform better in the detection of transient signals,
damped exponential signals in particular. Motivation is a possibility of fault
detection in rotating machinery.

Goal 3 Symmetrical Zolotarev polynomials

• Summarize current finding regarding symmetrical Zolotarev polynomials in-
cluding orthogonality properties.

• Describe yet unresolved desired properties of the polynomials with respect to
spectral analysis.

• Explore numerical properties of even Zolotarev polynomials generation algo-
rithm. Assess precision of generated polynomials as a waveform in the time
domain and coefficients in the spectral domain.

Goal 4 Symmetrical Zolotarev polynomials in spectral analysis

• Explore evaluation of discrete Zolotarev transform coefficients in the time do-
main.

14
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• Propose a novel spectral analysis method employing symmetrical Zolotarev
polynomials in the time domain; in contrast with the ADZT which uses ap-
proximated polynomials and is implemented in the frequency domain.

• Assess the behavior of the proposed spectral analysis method based on symmet-
rical Zolotarev polynomials by comparing with the ADZT. Describe differences
in results given by both methods.



Chapter 4

ADZT Computational Demands and
Optimization

The ADZT algorithm leads to relatively high computational load compared to other spec-
tral analysis methods, e.g. FFT algorithm. The STADZT improvement becomes apparent
for high segment lengths; 512 samples and higher. In general, longer the segment the bet-
ter [38]. It is recommended to use segment overlap at least 75 % segment length, 90 %
ideally, to prevent information loss [38]. Large segment length, large segment overlap, and
structure of the ADZT algorithm leads to significantly high computation load. Therefore,
software implementation runtime of the algorithm is relatively long. Original ADZT im-
plementation in Matlab, available at [40], is able to compute one-shot ADZT spectrum of
2048 length in 6.2 s, measured on a PC equipped with Pentium 4 processor. Taking into
account large segment overlap total runtime for STADZT of an analyzed signal is in tens
of minutes or even more.

Firstly, Computational demands of the algorithm are analyzed with means of algorithm
asymptotic complexity. Secondly, a more computationally software implementation is
proposed and verified. Thirdly, an embedded solution is designed and verified.

4.1 ADZT Algorithm Description

This section briefly describes the ADZT algorithm. Purpose of the description is to
enable analysis of the algorithm computational demands, to be able to propose more
efficient implementation as well as its realization.

The ADZT algorithm was first introduced by Radim Špet́ık in his dissertation the-
sis [35] and it is best described in Václav Turoň doctoral thesis [36]. The ADZT algorithm
[37, 36] can be divided into three steps, see Fig. 4.1, of which descriptions follow.

Step 1 The first step is DFT spectrum computation using the FFT algorithm of

16
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Nopt(`) - eq. (4.1)
mopt(`) - eq. (4.2)

Z(`) - eq. (4.3)
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Figure 4.1: The ADZT algorithm diagram; blocks with double line border are implemented
in HW and with single line in SW.

length NDFT . Since the algorithm works only with real signal, it is sufficient to work with
a one-sided spectrum of length N = NDF T

2 .
Step 2 In the second step the ADZT basis selectivity refinement takes place. The

algorithm works in the spectral domain for each `th spectral line, ` = {1, . . . , N}. The
DZT spectrum Z(`) can be decomposed [41] in the stationary part and non-stationary
(N-S) part. The stationary part S(`) is `th DFT spectral line. The N-S part

N(`,m) =
m∑
`′=1

(−1)`′S(`− `′), (4.1)

is parametrized by bandwidth1 m of approximated polynomial. The transformation se-
lective feature is comprised in the N-S part. The transformation selectivity refinement
is administered by varying the non-stationary part using the bandwidth. Optimal band-
width is estimated according to

mopt(`) = arg min
m′

{ 1
m′

N(`,m′) sgn(S(`))
}
, m′ = {1, 2, . . . , N − 1} , (4.2)

where m′ is tested bandwidth. The optimal N-S part Nopt(`) is acquired from (4.1) using
estimated optimal bandwidth (4.2).

Step 3 The DZT spectrum is composed from the stationary and the N-S part for each
`th spectral line, ` = {1, . . . , N}. At first the signs of each part are compared with each
other. Based on the result of the comparison one of the following three cases is taken: the
first case is to suppress spectral line Z(`) = 0; the second one is to preserve DFT spectral
line Z(`) = S(`); the third one is to determine a new spectral line value according to

Z(`) = norm(`) {S(`) + k(mopt(`))N(`)} , (4.3)
1The term bandwidth is different from frequency bandwidth.
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where
norm(`) = 1√

1 +mopt(`)k2(mopt(`))
, (4.4)

is the normalization coefficient,

k(m) =
√

1− σ2

mσ2 , (4.5)

is the non-stationarity index (N-S index) and σ is the degree of the N-S part suppression.
The parameter σ has a value in interval σ ⊂ (0, 1); it is chosen according to user needs.

The algorithm works separately for the real and imaginary spectrum part; after each
part is processed the complex DZT spectrum is recomposed.

4.2 Computational Demands Analysis

At first an estimation of the computational power necessary to execute STADZT transform
is performed. The analysis of the ADZT algorithm in Fig. 4.1 asymptotic complexity for
each step follows.

Step 1 computation of the NDFT -point DFT spectrum S(`). The DFT spectrum is
computed using the FFT algorithm. NDFT is constrained to be the power of 2. Thus the
asymptotic complexity of this step is O1 = O(NDFT log2 NDFT ).

Step 2 Estimation of the optimal bandwidth mopt(`) by minimization (4.2) of the N-S
part (4.1) for one-sided DFT spectrum of length N . The asymptotic complexity of this
step is O2 = O(N2).

Step 3 The DZT spectrum composition according to (4.3); this step has constant
time complexity of O3 = N .

Hence the asymptotic complexity of the ADZT algorithm is OADZT = O(N2). Step 2 is
the most time consuming one. Compare this with FFT algorithm asymptotic complexity
of OFFT = O(N log2 N).

Based on the structure of the algorithm we also did a more precise estimation of
necessary system-level computation power in MIPS (million instructions per second). We
assume a standard Harvard DSP CPU architecture with three buses (instruction, data
bus X, and data bus Y), divider with DIV operation, and Multiply And Accumulate
(MAC) unit; such that MAC operation unit is able to load two operands simultaneously.
Computational powers needed for the algorithm steps are stated in Tab. 4.1. Based on
the above we can say that real-time STADZT of NDFT = 2 048 samples with 80 % overlap
needs a CPU with performance at least ≈ 210 MIPS, and performance of ≈ 420 MIPS for
90 % overlap. Approximate processor requirements are as follows. A 32 bit fixed-point
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Algorithm
step

Operation Inst. per it-
eration

Time complexity Comp. power (MIPS)

Overlap (OV):
80 %

OV: 90 %

1(FFT) complex
MULT

4 2 NDF T /2 ×
log2(NDF T )

≈ 2 ≈ 4

complex
ADD

2 NDF T × log2(NDF T ) ≈ 2 ≈ 4

2 (N-S opt) (4.1), (4.2) 5 3 N2 ≈ 206 ≈ 413
3 (DZT
spec.)

(4.5), (4.4),
(4.3)

19 + 18 + 3 4 N ≈ 2 ≈ 3

Total: ≈ 210 ≈ 420
2 four MAC operations
3 (4.1): one MAC operation, (4.2): one DIV and two MULT operations, arg min search in one
operation
4 (4.5): three multiplications, one subtraction, one division, and fifteen operations for 32 bit square
root using Newton’s method; (4.4): three multiplications, one subtraction, one division, and fifteen
operations for 32 bit square root using Newton’s method; (4.3): one addition and two multiplication
operations

Table 4.1: The estimation of computational power in MIPS needed for the STADZT
real-time computation with segment length of NDFT = 2 048 samples and sampling

frequency of fs = 16 kHz for segment overlaps of 80 % and 90 %.

DSP processor with MAC requires clocking frequency of 300 MHz or 600 MHz, for 80 %
or 90 % overlap, respectively. A general purpose processor without a MAC unit requires
clocking frequency of 400 MHz or 800 MHz, for 80 % or 90 % overlap, respectively; the
lack of a MAC unit raises power requirements by ≈ 30 %.

4.3 Optimized Software Implementation

Original ADZT implementation in Matlab, available at [40], uses 64 bit wide floating-point
arithmetic, which implementation is rather inefficient in terms of resources and power
consumption. For an efficient implementation fixed-point representation is more suitable.
We implemented the algorithm model using Nb = 32 bit wide fixed-point variables and
arithmetic written in C language; the model proper functionality was verified against the
original Matlab implementation. The descriptions of computation methods used in the
fixed-point algorithm implementation in each algorithm step in Fig. 4.1 follow.

Step 1 We used Fast Fourier Transform (FFT) decimated in frequency (DIF) as DFT
computation algorithm. The FFT uses radix-2 with 32 bit fixed-point arithmetic. As
a precaution measure to prevent overflows each stage output is divided by 2, see [42]. The
FFT has Nstages = log2(NDFT ) = 11 stages in case of maximal signal segment length; the
output is 11 times shifted right. The overflow does not necessarily occur in every stage.
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We carried out a simulation 5 showing that the average count of overflows NOF is 4 and 7
in the worst case. Thus the 32 bit FFT result has 25 Less Significant Bits (LSB) non-zero
(Nb−Nstages +NOF = 32−11 + 4 = 25 bits) in average and 28 LSB non-zero in the worst
case (Nb −Nstages +NOF = 32− 11 + 7 = 28 bits).

Step 2-1 The N-S part is computed according to (4.1). Equation (4.1) can be rewritten
into recurrent form

N(`,m) = N(`,m− 1) + (−1)m S(`−m), (4.6)

which is more suitable for computation. An overflow can occur log2(m) times in the worst
case where m = N − 1. The DFT coefficients have 6 Most Significant Bits (MSB) in zero
on average case. The saturation must be applied after each addition. Non saturated
overflown result could lead to false minimal N-S part detection in the next step; this
would result in a distorted DZT spectral line value. If a result is saturated, it will be the
largest one in the tested set of bandwidths. The result will not be, most likely, selected as
minimal and its value will be discarded. In a nutshell, saturated N-S part does virtually no
harm. Moreover, no overflow had occurred in N-S part computation during the conducted
simulation using 32 bit wide variables and segment length of NDFT = 2 048.

Step 2-2 Estimation of optimal bandwidth according to (4.2); the N-S part, computed
in previous step, is weighted by weighting coefficient 1

m′
and sgn(S(`)) for each m′. The

minimal value is being selected simultaneously. The weighting coefficient 1
m′

in (4.2) for
each m′ is precomputed in memory in order to multiply by 1

m′
rather than divide by m′.

The weights 1
m′

are ≤ 1 for each m′; after division by 2 overflow is not an issue here.
Step 3 The DZT spectrum composition according to (4.3) can be rewritten using

(4.4) and (4.5) to
Z(`) = σS(`) +K(mopt(`))N(`), (4.7)

where K(m) = σ k(m). There are two reasons why the rewritten form is more suitable
for fixed-point arithmetic computation. Firstly, by pre-computing coefficient K(m) for
each bandwidth the N-S is actually multiplied only once; thus, reducing round-off error.
Secondly, the range of K(`) is (1, 0), which allows us to avoid normalization; thus there
is no signal to quantization noise ratio drop.

Designed fixed-point software implementation of the ADZT algorithm in C language
allows to compute one-shot ADZT spectrum in 100 µs, measured on a PC equipped with
Pentium 4 processor.

5The stimuli of the simulation were composed of a few musical tracks of different genres, several
minutes of spoken language, and several segments of Gaussian noise.
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4.4 Embedded Implementation

An embedded solution enables application in an embedded system. While keeping in
mind the main goals of the embedded system: low area requirement and low power con-
sumption, we approached the system design with co-design methods. The algorithm is
implemented on hardware (HW) devices with encapsulated processors; main computa-
tional stress is loaded on HW units allowing the processor to be simple, small and low
power. Field Programmable Gate Array (FPGA) was chosen as a HW platform: the
FPGA is widespread nowadays and can be easily integrated into a large System on Chip
(SoC). Furthermore, the FPGA power consumption is low especially with non-volatile de-
vices. The system requirements are to compute real-time STADZT spectrum of following
parameters:

• the input signal is mono audio signal with sampling rate of fs = 16 kHz,

• maximal segment length is NDFT = 2 048 samples,

• segment overlap of 80 % at least, 90 %, if possible.

The design of the embedded solution is described in Appendix A, see Chapter 9.

4.4.1 Physical Parameters

Xilinx Spartan 6 FPGA [43] was chosen as a target device, since there were several devel-
opment boards [44] equipped with it at disposal. The design implemented for maximum
segment length of NDFT = 2 048 on targeted device XC6SLX45-3 utilizes 1 164 (≈2 %) of
the device slice registers and 5 492 (20 %) of the device LUTs.

The FFT coprocessor memory utilizes 8 blocks of 1 024×32 bit dual-port block RAMs:
twiddle factors ROM is implemented as a block RAM. The Plasma registers and RAM
are utilized as distributed memory, and both are composed in the device LUTs utilization.
The N-S coprocessor memory is implemented as one 1 024×32 bit block RAM. Hence the
design utilizes 22 (≈18 %) of the device RAMB16BWER block RAMs. The design total
memory utilization is 44 kB, of which 4 kB pertain to the N-S part coprocessor.

DSP48A1 blocks are used as 32× 32 bit multipliers in both coprocessors. 32× 32 bit
multiplier is assembled from four DSP48A1 blocks: each block has one 18 × 18 bit mul-
tiplier [45]. The FFT coprocessor employs 24 DSP48A1 blocks: two radix-2 butterflies,
where each one has one complex multiplier composed of three real multipliers [45]. The
N-S coprocessor has only one real multiplier. Hence the total number of used DSP48A1s
blocks rises up to 28 (48 % the device utilization).

The design maximum clocking frequency is constrained by its critical path. In our
case the critical path occurs in the Plasma processor taking 19.059 ns; this allows us to
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set clocking frequency up to fCLK = 50 MHz. The critical path leads from processor
controller through bus multiplexor to RAM.

4.5 Verification

To be certain of proper functionality of both optimized software and embedded implemen-
tation have been achieved the verification is mandatory. The verification plan goal on the
system level is to validate the system output DZT spectral lines series against the compu-
tational model output. The verification uses coverage-driven constrained random-based
approach [46]. The functional coverage requirement of the plan is to cover all three cases
in Step 3 of the ADZT algorithm, see Sec. 4.1. Since the DZT is intended for spectral
analysis of non-stationary signals, the test data must have non-stationary character. The
test data were 40 segments of length NDFT samples consisting of music of different genders
(pop music, metal, classical music), vocal recordings, and few segments of Gaussian noise.
The test data were selected as a subset of the computational model simulation test data
set in Section 4.3.

The system level verification environment is depicted in Fig. 4.2. Under Test (DUT)
is encapsulated in the verification environment written in behavioral VHDL code. The
environment generates a system clock, initializes global reset, and stimulates the DUT
with test data. The test data are loaded in Matlab and introduced to the DUT by file
I/O interface. The computational model serves as a behavioral model, and it is executed
in Matlab. The DUT output is compared in Matlab. The system was validated on both
RTL and gate levels. The unit level verification was performed for each coprocessor using
a similar scheme as system level verification. Each coprocessor was verified using its own
verification environment and behavioral model on both RTL and gate levels. Real system
HW realization was validated on the development board [44] using parallel interface [47]
as system interface.

4.5.1 Results

The system error performance has been measured on the computational model against
the original floating-point algorithm version. The measurement was performed as a part
of the simulation in Sec. 4.3 with the same test data set. The performance is quantified
using Signal to Noise Ratio (SNR)

SNRdB(n) = 10 log10

(
X(n)2

{X(n)−XDUT (n)}2

)
, (4.8)
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Figure 4.2: The system level verification schema of the system.

and mean SNR

SNRmean = 10 log10

(
1
N

N∑
n=1

X(n)2

{X(n)−XDUT (n)}2

)
, (4.9)

where X(n) is the floating-point model output value, and XDUT (n) is tested system output
value computed using 32 bit fix point arithmetic. The fixed-point version of the algorithm
adds quantization noise equivalent to SNRmean = 160 dB and min{SNR} = 58 dB. None
of the computed bandwidths was selected incorrectly, which means that the fixed-point
algorithm always selected the correct bandwidth and non-stationary part according to
(4.2).

The total runtime for segment length of NDFT = 2 048 is 570 k clock cycles of the
50 MHz clock domain, see Tab. 9.1; thus, approximately 11.4 ms. The system is capable
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of computing the STADZT results in real-time with ≈ 91 % overlap considering given seg-
ment length and signal sampling frequency. Note that fully SW solutions running on the
Plasma processor has runtime of ≈ 400 ms, 206 clock cycles. The required computational
power for a fully SW solution for given STADZT parameters estimation is 470 MIPS. Em-
ployed Plasma processor computational power is 50 MIPS of general purpose instruction
set: maximum clocking frequency is 50 MHz [48]. The difference in computational power
of ≈ 420 MIPS is overcome by HW parallelism.

4.6 Summary

Fixed-point software implementation of the ADZT algorithm was designed. Its proper
functionality was guaranteed by the verification. The C implementation of the algorithm
allows to compute one-shot ADZT spectrum of 2048 length in 100 µs. Compared with
runtime of original Matlab implementation which runtime is 6.2 s, measured on a PC
equipped with Pentium 4 processor, the fixed-point implementation allows to produce
results in quick enough fashion.

First embedded implementation of the ADZT algorithm was designed. The algorithm
asymptotic time complexity of O(N2), which is relatively high compared with the FFT
algorithm, was revealed by its analysis. Such high time complexity was dealt with using
the co-design methods. Dedicated HW parts bear main computational stress, while the
SW part carries the less demanding calculations and algorithm decisions. The embedded
solution is powerful enough to compute the STADZT spectrum of mono audio signal in
real-time assuming sampling frequency of 16 kHz, segment length of 2 048 samples and
overlap of 91 %. Computed real-time STADZT spectrum does not suffer from excessive
information loss. Light and low-power processor with 50 MIPS of computational power
is employed as a heart of the system; the whole solution computational power is equiv-
alent to 420 MIPS processor with Harvard DSP CPU architecture and MAC unit. The
system memory utilization is 44 kB from which the N-S part coprocessor utilizes 4 kB.
The platform can be further adapted to support a simple application exploiting ADZT
spectrum; the application can be implemented by SW on the processor with relatively low
additional design efforts. The design targets FPGA device; therefore, it can be relatively
easily integrated into a larger system on chip.



Chapter 5

Damped Exponential Signals
Analysis

Damped exponentials model can represent different signals in a number of applications.
For example, fault detection in rotating machinery [49], fault detection in power trans-
mission [50, 51], health monitoring [52], structural statics [53], and others. The analysis
of faulty rotating machinery, bearings, vibration signals is the main motivation behind
this analysis. A model example of a faulty bearing vibration signal and its brief analysis
is in Section 5.2.4. Note that it has been shown recently that the STADZT performs well
detecting faults in rotating machinery, bearings, in comparison with other methods [54].

The analysis of the linear combination of damped exponentials has several established
methods available. This work explores application to the analysis by spectral methods,
the ADZT in particular. The spectral methods can be divided into parametric deter-
ministic, parametric stochastic, and non-parametric. Non-parametric spectral methods
can be used to detect damped harmonic signals; however, they do not estimate partic-
ular harmonic component damping and amplitude values. This can be limitting to its
application. On the other hand, non-parametric methods do not suffer from instability
due to unknown, and/or large, number of signal components as parametric methods do,
which makes the results more stable in more complex signal cases. A representative is
the DFT. Since the damped harmonic signal is non-stationary it is reasonable to assume
non-stationary transforms, the ADZT. However, the analysis [55] shows that the ADZT
is not suitable for damped harmonic signal analysis. The ADZT does not show the signal
energy in the spectrum at all for some cases. This phenomenon is explored in more de-
tail and a modification of the ADZT, performing better, is proposed, in Section 5.2 and
Section 5.2.1, respectively. The modification results are compared against the DFT since
the DFT is an inherent part of the ADZT.

Parametric deterministic spectral methods such as Prony method [56] and iterative

25
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Steiglitz McBride [57] are well established. They are a common tool used to analyze
damped exponentils signals. Both represent a sub-optimal solution of nonlinear iden-
tification problem using least squares error minimization. Stochastic spectral methods
representatives are autocorrelation and covariance methods [58]. The covariance method
normal equations are formally equal with the Prony method ones. The autocorrelation
method normal equations converge to Prony ones for larger sample sequences as well.
Therefore, the autocorrelation and covariance methods are not distinguished from the
Prony one. The original Prony method is not a consistent estimator. There are exten-
sions improving its robustness to noise; however, they are not considered since noise-free
signal is assumed in this analysis. Another group of parametric spectral methods is auto-
covariance decomposition to signal and noise subspaces, such as MUSIC [59], Pisarenko,
etc. Usage of the parametric methods is debated later in this chapter, in Section 5.1.

This work debates analysis of a real signal composed of a damped harmonic component
without the presence of noise. Following discrete signal is assumed

s(n) = Arn sin
(

2πfn
fs

)
, r ∈ (0, 1), n ∈ {0, 1, . . . , N − 1}. (5.1)

It is a harmonic signal of amplitude A, frequency f , zero initial phase, sampled with
sampling frequency of fs and N samples long. The rn is the signal envelope which is
exponentially decaying according to rn = exp(σn) with damping coefficient σ = ln r. An
example of the signal is in Figure 5.1.

0 0.5 1 1.5
Time (s)

-1

-0.5

0

0.5

1

Figure 5.1: Example of the damped harmonic signal (5.1) of parameters: A = 0 dB,
f = 20 Hz, r = 0.97, N = 200 samples, fs = 128 kHz.
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The signal power spectrum is given as

S(exp (jω)) = Z∗{s(n)}Z{s(n)}|z=exp (jω), (5.2)

where the signal (5.1) in Z-domain is

Z{s(n)} = A
rz−1 sin

(
2πf
fs

)
1− 2rz−1 cos

(
2πf
fs

)
+ r2z−2

. (5.3)

Equation (5.3) can be interpreted as a system impulse response with complex conjugate
poles having modulus r. The signal spectrum is non-zero in the whole frequency range.
It varies from narrowband to wideband for small and large damping, respectively. The
signal envelope time constant can be approximated for small damping r ≈ 1 by impulse
invariance method [60] as

τ = 1
1− r

1
fs
. (5.4)

5.1 Parametric spectral methods

At first let us focus at the AR model frequency response estimation methods: Prony and
Steiglitz-McBride, and compare estimated power spectrum with the theoretical power
spectrum (5.2). An important parameter of both methods is AR model order. Theoret-
ically, the AR model order is given by the order of signal component Z-transformation
(5.2), while no additional noise is assumed. In general number of signal components is
unknown in practice, while selecting the model order is crucial. There are information
statistical criteria which estimate number of degrees of freedom; however, they are out of
the scope of this paper.

An important question is how to detect presence of a signal component and its fre-
quency. A common approach is to manually select a pole pertaining to desired signal
feature, component, and then extract the pole frequency. Consider example signal as
mixture of two damped harmonic components (5.1) with parameters: f1 = 20 Hz and
f2 = 40 Hz, r1 = r2 = 0.97, A1 = 0 dB, A2 = −10 dB, N = 200 samples long sampled
with fs = 128 Hz sampling frequency. The order of the signal frequency response is equal
to four. However, both methods do not perform well for AR model order of four, see
the Figure 5.2a. Estimated power spectrum almost ignores the second component peak.
The second pole frequency error is relatively high, ∆f2 ≈ 4.5 Hz for both methods. The
results are better if higher AR model order is chosen. The reason is that the methods use
biased covariance estimate and the signal has rather limited length due to damping. This
does not allow covariance estimate to converge with small enough bias. More degrees of
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freedom improve the behavior. The error in pole frequency localization decreases with
higher model order; however, if number of poles in the model is higher, it becomes increas-
ingly difficult to distinguish single pole to each component. The first peak in frequency
is defined by multiple poles, see Figure 5.2d.

An option is to detected distinctive peaks in power spectrum and extract its frequen-
cies, assuming that local maximum of a distinctive peak is close to a signal component
frequency; however, there are cases of false peaks in power spectrum, see Figure 5.2b,
thus this approach is tricky. In addition to that there are cases where a signal component
does not have a peak in the power spectrum. Consider an example, where frequencies
are spaced closer together, damping is higher and amplitude of the second component is
smaller: f1 = 20 Hz, f2 = 25 Hz, A1 = 0 dB, A2 = −20 dB, r1 = r2 = 0.90. In this
case the second component frequency is indeed hidden in the first component bandwidth,
there is only a slight inflection around its frequency, see the theoretical power spectrum
in Figure 5.3a. The cause is combination of larger bandwidth due to damping as well as
smaller distance in amplitude and frequency. In case where order of AR model is equal
to the signal Z-transformation order of four, the second component pole frequency has
relatively large error of ∆f2 ≈ 8.6 Hz, see Figure 5.3a. The error decreases for higher
model orders, for example, order of sixteen has the error of ∆f2 ≈ 1.6 Hz, see Figure 5.3b.
But again it is problematic to detect the component presence since power spectrum peak
search is inconclusive.

Usage of AR model frequency response methods leads to time consuming, per signal,
usage in order to be able to tune the model parameter. This makes automatic detection
troublesome. Another aspect is that to extract a detected component frequency is not
straightforward. It can be difficult to assign correct pole to a peak in power spectrum,
especially since a peak can be composed by more than a single pole. For these reasons
we will not elaborate further about the methods. No extended comparison with the non-
parametric methods is conducted. The Prony method is compared only illustratively on
a single example.

Let us now focus at the methods based on auto-covariance decomposition to signal
and noise subspaces, such as MUSIC, Pisarenko etc. These methods do not perform
well compared to Prony one. The first reason is that there is no noise present in the
analyzed signal. The second reason is that the auto-covariance decomposition requires
more samples for reliable estimation, more than the analyzed signal is composed of due
to damping. Due to both reasons, the estimated pseudo-spectrum suffers from false peaks
significantly. Consider an example of signal identical to the one analyzed in Figure 5.2.
Pseudo-spectrum estimated by MUSIC method [59] is in Figure 5.4. If the order of MUSIC
model is higher than the signal frequency response order the pseudo-spectrum estimate
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suffers from false peaks. Since the signal frequency response order is generally unknown,
it is a significant problem. Thus this type of methods is not relevant to damped harmonic
signal analysis and will not be further considered.
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(a) AR model order p = 4, closest pole to
each signal component frequency delta:
∆f1 ≈ 0.25 Hz, ∆f2 ≈ 4.5 Hz.

0 10 20 30 40 50 60
Frequency (Hz)

-10

-5

0

5

10

15

20

25

30

35

40

P
ow

er
 (

dB
)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

P
ol

e 
m

od
ul

us
 (

-)

Prony
Steiglitz-McBride (S-MB)
Theoretical spectrum (2)
Prony AR model poles
S-MB AR model poles

(b) AR model order p = 8, closest pole to
each signal component frequency delta:
∆f1 ≈ 0.36 Hz, ∆f2 ≈ 2.0 Hz.
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(c) AR model order p = 16, closest
pole to each signal component frequency
delta: ∆f1 ≈ 0.1 Hz, ∆f2 ≈ 0.6 Hz.
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(d) AR model order p = 24, closest
pole to each signal component frequency
delta: ∆f1 ≈ 0.3 Hz, ∆f2 ≈ 0.3 Hz.

Figure 5.2: Estimated power spectrum for mixture of two damped harmonic components
(5.1) for Prony and Steiglitz-McBride spectral parametric methods. The signal parameters
are A1 = 0 dB, f1 = 20 Hz, A2 = −10 dB, f2 = 30 Hz, r1 = r2 = 0.97, N = 200 samples,
fs = 128 Hz. AR model poles are depicted as crosses. Poles with non-negative frequencies
are displayed only; their complex conjugates are not.
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(a) AR model order p = 4, closest pole
to each signal component frequency delta:
∆f1 ≈ 0.01 Hz, ∆f2 ≈ 8.6 Hz.
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(b) AR model order p = 16, closest pole
to each signal component frequency delta:
∆f1 ≈ 0.2 Hz, ∆f2 ≈ 1.6 Hz.

Figure 5.3: Estimated power spectrum for mixture of two damped harmonic components
(5.1) for Prony and Steiglitz-McBride spectral parametric methods. The signal parameters
are A1 = 0 dB, f1 = 20 Hz, A2 = −20 dB, f2 = 25 Hz, r1 = r2 = 0.90, N = 200 samples,
fs = 128 Hz. AR model poles are depicted as crosses. Poles with non-negative frequencies
are displayed only; their complex conjugates are not.
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Figure 5.4: Estimated pseudo-spectrum via MUSIC for mixture of two damped harmonic
components (5.1). The signal parameters are A1 = 0 dB, f1 = 20 Hz, A2 = −10 dB,
f2 = 30 Hz, r1 = r2 = 0.97, N = 200 samples, fs = 128 Hz.
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5.2 Analysis with ADZT

Since the damped harmonic signal is non-stationary the non-parametric methods are
used in their non-stationary form. The DFT as STDFT producing spectrogram and
the ADZT as STADZT producing zologram. In order to acquire signal Power Spectral
Density (PSD), spectrogram and zologram are marginalized using periodogram averaging
method [1]. A question raises whether the periodogram averaging is a suitable method
since its purpose is to estimate PSD of stationary stochastic signals; however, the sig-
nal (5.1) is deterministic, non-stationary and noiseless. DFT spectral lines within the
signal bandwidth have consistent magnitude in all periodograms. The spectral leakage is
inconsistent within different analysing window steps. Thus resulting PSD estimates the
signal spectrum, while the spectral leakage is slightly reduced. The same can be said for
the ADZT since it takes the DFT spectrum as a start point and filters it.

In order to distinguish different harmonic signal components in the spectrum, leakage
reduction is the key. It is reduced by two mechanisms in this case: the former described
periodogram averaging and by used window weighting function. Additionally by the
ADZT optimization properties. Hamming, Blackman weighting windows are considered.
Hamming since it is commonly used in signal analysis and Blackman for its usage in radar
target detection, where is considered as the most suitable to prevent target masking [61].
The other windows are not considered, since the key aspect is low peak side lobe amplitude
level which is lower for both Hamming and Blackman than the others.

Transform length is set to N0 = 128 and step to one sample for both spectrogram
and zologram. The transform length, or window length, is a question of frequency step
which is set to ∆f = 1 Hz. Note that the frequency localization cannot be increased by
lengthening the transforms for larger dampings. The analyzed signal energy dissipates
due to damping; longer transform length effectively manifests as zero padding, see the
Figure 5.5b. The analysing window step of one sample yields as zologram 99 % overlap,
which guarantees no information loss [38].

Figure 5.5c shows the spectrogram, Figure 5.5e the zologram, both with Hamming
weighting window, and Figure 5.5g estimated PSD. The analyzed signal is the same as
in Figure 5.2. It is noticeable that both spectrogram and zologram detect both harmonic
components. The estimated PSD shows distinct peaks for both the STDFT and the
STADZT.

The STADZT removes spectral leakage thoroughly; however, significant part of har-
monic component energy is removed as well. The component with higher frequency is
even removed completely for higher damping value r = 0.90, see figure 5.5f and 5.5h.
The STADZT assumes the signal is of leakage characteristics and removes it. Experi-
ments showed that the signal is completely removed if the signal time constant in samples
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(a) Analyzed signal; damping of r = 0.97.
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(b) Analyzed signal; damping of r = 0.90.
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(c) Spectrogram; Hamming;
damping of r = 0.97.
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(d) Spectrogram; Hamming;
damping of r = 0.90.
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(e) Zologram; Hamming;
damping of r = 0.97.
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(f) Zologram; Hamming;
damping of r = 0.90.
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(g) Estimated PSD; damping of r = 0.97.
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(h) Estimated PSD; damping of r = 0.90.

Figure 5.5: Analysis of mixture of two damped harmonic components (5.1) closely spaced
in frequency; f1 = 20 Hz, f2 = 30 Hz, A1 = 0 dB, A2 = −10 dB, N = 200 samples,
fs = 128 Hz; both transforms lengths are 128 samples, steps are 1 sample.
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Nτ = dτfse is roughly an order of magnitude shorter than analyzed window length N0.
This relation is examined in Table 5.1.

ri Nτ N0 = 32 N0 = 64 N0 = 128 N0 = 256
0.97 33 3 3 3 3

0.91 11 3 3 7 7

0.86 7 3 7 7 7

Table 5.1: Ability of STADZT to detect harmonic signal of f = 64 Hz frequency sample by
fs = 512 Hz in relation to different signal time constant in samples Nτ and transformation
length N0. The symbol 3 depicts the presence of the signal while the symbol 7 the
opposite.

5.2.1 ADZT Modification for Damped Harmonic Signals

The modification of the ADZT lays within reducing amount of spectral leakage removal in
spectrum. Amount of spectral leakage removal is proportional to value of the transforma-
tion basis bandwidth, see the term definition in Section 4.1. Higher the bandwidth value
is more aggressively are spectral leakage lines removed. Thus by introducing constrains
of the bandwidth value during the optimization process the spectral leakage removal can
be moderated. In general, two options are available. Firstly, to limit optimized band-
width to a cap value. Secondly, to fix the bandwidth to a specific value. The experiments
shown that if the bandwidth value is limited the optimization process does not behave
property. A number of unpredictable artifacts emerges in the resulting spectrum. The
second option, to fix the bandwidth to a specific value is a better option. Resulting spec-
trum does not suffer from artifacts. This modification introduces a trade-off between high
frequency-time resolution precision of original ADZT and spectral leakage reduction. It
was found by an experiment that the best performance, in terms of damped harmonic
signal preservation and spectral leakage reduction, is provided when the bandwidth is
limited to a value of 1. In case of the bandwidth being fixed to 1 the transform algorithm
degrades into a much simpler form. There no need to find an optimal bandwidth by (4.2),
the N-S part degrades to

N(`,m = 1) = (−1)`S(`− 1). (5.5)

Furthermore, the decision part of the algorithm reduces only to two cases. In the first
case, where the signs of stationary part and N-S part are equal sgn{S(`)} = sgn{N(`)},
the spectral line is kept as stationary part (DFT spectral line) only SZ(`) = S(`). In the
second case, where the signs are different sgn{S(`)} 6= sgn{N(`)}, the spectral line is
removed SZ(`) = 0.
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The ADZT with fixed bandwidth to 1 (ADZTFB1) preserves the damped harmonic
component spectral line in spectra in all cases specified in the Table 5.1, see Table 5.2,
while the spectral leakage is still being reduced compared to STDFT results. Experi-
ments showed the best performance in terms of spectral leakage and signal preservation
is achieved with Hamming weighting window. Compare the results achieved by the mod-
ification with the original ADZT in Figure 5.6.

Short time version of the modified method, the (Short Time Approximated discrete
Zolotarev transform with fixed bandwidth to 1 (STADZTFB1)), is defined by (2.22),
where the ADZT function is replaced by Approximated discrete Zolotarev transform with
fixed bandwidth to 1 (ADZTFB1).

ri Nτ N0 = 32 N0 = 64 N0 = 128 N0 = 256
0.97 33 3 3 3 3

0.91 11 3 3 3 3

0.86 7 3 3 3 3

Table 5.2: Ability of STADZTFB1, the STADZT modification with bandwidth fixed to 1,
to detect harmonic signal of f = 64 Hz frequency sample by fs = 512 Hz in relation to
different signal time constant in samples Nτ and transformation length N0. The symbol
3 depicts the presence of the signal while the symbol 7 the opposite.

5.2.2 Benchmark

The main objective is to compare the STADZTFB1 against the STDFT. The Prony
method is compared only illustratively.

Test1 Compare the STADZTFB1 and the STDFT performance in detection of multiple
damped harmonic components randomly distributed in frequency.

Test2 Compare the STADZTFB1 and the STDFT performance in detection of damped
harmonic components which are close together in frequency, close enough so that
one component is partially masked by the other one’s bandwidth.

The tests are realized by simulation which description follows. Each iteration a test
signal as sum of harmonic components (5.1) with random parameters is generated, and
PSD is estimated for each method. To evaluate the results a simple peak detector was
designed. The peak detector locates local maximum and peak width in the PSD using
a-priori knowledge of given component frequency. A peak is considered as detectable if
the peak height is at least 3 dB. Note that false detections are not taken into account
for simplicity. Frequency of a peak is calculated as spectral centroid, center of mass of
frequency bins, within the peak. Error in estimated peak frequency is given by comparing
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(a) Original STADZT zologram; Ham-
ming; damping of r = 0.97.

0 20 40 60
Sample index (-)

0

20

40

60

F
re

qu
en

cy
 (

H
z)

(b) Original STADZT zologram; Ham-
ming; damping of r = 0.90.
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(c) STADZTFB1 zologram; Ham-
ming; damping of r = 0.97.
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(d) STADZTFB1 zologram; Ham-
ming; damping of r = 0.90.
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(e) Estimated PSD; damping of r =
0.97.
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(f) Estimated PSD; damping of r =
0.90.

Figure 5.6: Analysis of mixture of two damped harmonic components (5.1) closely spaced
in frequency; f1 = 20 Hz, f2 = 30 Hz, A1 = 0 dB, A2 = −10 dB, N = 200 samples,
fs = 128 Hz; both transforms lengths are 128 samples, steps are 1 sample.

the frequency against known given component frequency. The outputs of the simulation
are histograms of component frequency error and peak height accumulated in multiple



CHAPTER 5. DAMPED EXPONENTIAL SIGNALS ANALYSIS 37

iterations.
In case of the Test1 the simulation was set up as follows. The test signal contained NC

harmonic components (5.1) with random parameters: frequency uniformly spread within(
0, fs

2

)
, amplitude uniformly spread within (0, 1〉 and damping uniformly spread within

〈0.90, 0.999〉. The output statistics are given for all the components cumulatively.
In case of the Test2 the simulation was set up as follows. The test signal contained

a pair of harmonic components (5.1) with defined distance in frequency fdist, distance
in amplitude Adist and fixed damping for both; thus f2 = f1 + fdist (Hz) and A2 =
A1 +Adist (dB). Frequency of the first component is spread uniformly within

(
0, fs

2

)
across

iterations. Both distances in frequency and amplitude have additional normal noise of
small variance, 0.52 Hz and 1 dB, respectively. The second, weaker in amplitude, hence
masked, component output statistics are of interest.

5.2.3 Results

Simulation of the Test1, described in Section 5.2.2, was conducted with test signals con-
taining NC = 6 damped harmonic components (5.1) of random amplitude, damping and
frequency across spectrum. Estimated frequency error histogram for STDFT with Ham-
ming window is in Figure 5.7a and for STADZTFB1 in Figure 5.7b. The STDFT mean
error is zero and standard deviation 0.09 Hz. The STADZTFB1 reaches mean error
0.27 Hz and standard deviation 0.44 Hz. Thus the STADZTFB1 frequency estimation is
biased and deviates more. However, the error statistics are calculated only for occurrences
where a peak was actually detected. The STDFT detected 85.8 % of components and
the STADZTFB1 98.0 %. The STADZTFB1 is more capable of detection a component.
Further experiments showed that the higher standard deviation of STADZTFB1 is par-
tially caused by components which STDFT failed to detect. For the components STDFT
detected correctly the STADZTFB1 standard deviation is 0.21 Hz, approximately double
of the STDFT one.

Simulation of the Test2, described in Section 5.2.2, was conducted with test signals
containing a pair of components with distance in frequency fdist = 5 Hz and amplitude
Adist = 20 dB. Two simulations were done separately for lower r = 0.97 and higher
r = 0.90 damping, illustrations of estimated PSDs for each damping are in Figure 5.8a
and Figure 5.8b, respectively. The statistical results are given for the weaker component,
the second one with lower amplitude and higher frequency.

The simulation for r1,2 = 0.97 revealed the STDFT frequency estimation error mean
0.02 Hz, standard deviation 0.13 Hz and 70.8 % peaks detected, see Figure 5.9a. In case of
the STADZTFB1 error mean 0.06 Hz, standard deviation 0.08 and 99.5 % peaks detected,
see Figure 5.9c. It is noticeable that the STDFT with Hamming window starts to fail
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(a) Error of detected peak frequency
estimation for STDFT, Hamming win-
dow.
meanerr = 0.00 Hz,
stderr = 0.09 Hz,
85.8 % peaks detected.
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(b) Error of detected peak frequency
estimation for STADZTFB1, Ham-
ming window. meanerr = 0.27 Hz,
stderr = 0.44 Hz,
98.0 % peaks detected.

Figure 5.7: Simulation results for mixture of NC = 6 damped harmonic components (5.1)
with random frequency, amplitude and damping; the transform length is 128 samples
(∆f = 1 Hz), step is one sample; 500 iterations.

in detection of components. Peak of the second component in the example Figure 5.8a
is relatively small and can diminish in some other process realizations. This can be
observed in peak height histogram of the method in Figure 5.9b. The STDFT is on the
edge of 3 dB peak heigh, while the STADZTFB1 peak height distribution is quite tailed,
see Figure 5.9d. The STDFT statistics further degrade if damping is higher, distance
in frequency smaller or distance in amplitude higher, see the Table 5.3. Note that the
STADZTFB1 keeps similar performance for all parameters in the table.

The second simulation of the Test2 with higher damping r1,2 = 0.90 revealed that
the STDFT failed to detect all peaks. By looking at the example Figure 5.8b we can
see that the peak of the second components is quite small in this case, actually, it was
smaller than 3 dB, or non-existent, for all process realizations. On the other hand the
STADZTFB1 detected 90.8 % of peaks with mean error 0.17 Hz and standard deviation
0.29 Hz, see Figure 5.10a. The peak height distribution in Figure 5.10b still offers margin
for a detector. If a higher damping is used the STADZTFB1 performance degrades quickly,
see the Table 5.4. Note that the STDFT failed to detected the second components in all
cases of all parameters in the table.
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(a) Smaller damping r1,2 = 0.97.
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(b) Larger damping r1,2 = 0.90.

Figure 5.8: An example of estimated PSD of two damped harmonic components closely
spaced in frequency; f1 = 15.8 Hz, f2 = 20.5 Hz, A1 = 0 dB, A2 = −20 dB, N =
200 samples, fs = 128 Hz; the transform length is 128 samples (∆f = 1 Hz), step is one
sample.

fdist

Adist 25 dB 20 dB 15 dB

4 Hz 0 % 0.14 Hz, 0.76 Hz, 14 % 0.07 Hz, 0.37 Hz, 83 %
5 Hz 0 % 0.08 Hz, 0.14 Hz, 79 % 0.05 Hz, 0.10 Hz, 97 %
6 Hz 0 % 0.07 Hz, 0.14 Hz, 99 % 0.05 Hz, 0.10 Hz, 100 %

Table 5.3: The STDFT with Hamming window performance in detection of the weaker
component in mixture of two damped harmonic components closely spaced in frequency,
where f2 = f1 + fdist (Hz), A2 = A1 + Adist (dB) and damping r1,2 = 0.97. The f1 is
uniformly spread. N = 200 samples, fs = 128 Hz; the transform length is 128 samples
(∆f = 1 Hz), step is one sample. Entries are in following format: (meanerr, stderr,
Pdetection).
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(a) Error of detected peak frequency
estimation for STDFT, Hamming win-
dow.
meanerr = 0.02 Hz,
stderr = 0.13 Hz.
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(b) Peak height histogram for STDFT,
Hamming window.
70.8 % peaks detected.
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(c) Error of detected peak frequency
estimation for STADZTFB1, Ham-
ming window.
meanerr = 0.06 Hz,
stderr = 0.08 Hz.
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(d) Peak height histogram for
STADZTFB1, Hamming window.
99.5 % peaks detected.

Figure 5.9: Simulation results of two damped harmonic components (5.1) mixture; fdist =
5 Hz, Adist = −20 dB, r = 0.90, N = 200 samples, fs = 128 Hz and damping of r1,2 = 0.97;
the transform length is 128 samples (∆f = 1 Hz), step is one sample; 500 iterations.

fdist

Adist 25 dB 20 dB 15 dB

4 Hz 0.29 Hz, 0.51 Hz, 71 % 0.15 Hz, 0.28 Hz, 75 % 0.09 Hz, 0.19 Hz, 83 %
5 Hz 0.25 Hz, 0.49 Hz, 86 % 0.17 Hz, 0.29 Hz, 91 % 0.12 Hz, 0.16 Hz, 98 %
6 Hz 0.36 Hz, 0.58 Hz, 88 % 0.19 Hz, 0.22 Hz, 90 % 0.12 Hz, 0.09 Hz, 100 %

Table 5.4: The STADZTFB1 with Hamming window performance in detection of the
weaker component in mixture of two damped harmonic components closely spaced in
frequency, where f2 = f1 + fdist (Hz), A2 = A1 + Adist (dB) and damping r1,2 = 0.90.
The f1 is uniformly spread. N = 200 samples, fs = 128 Hz; the transform length is 128
samples (∆f = 1 Hz), step is one sample. Entries are in following format: (meanerr,
stderr, Pdetection).
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(a) Error of detected peak frequency
estimation for STADZTFB1, Ham-
ming window.
meanerr = 0.17 Hz,
stderr = 0.29 Hz.
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(b) Peak height histogram for
STADZTFB1, Hamming window.
90.8 % peaks detected.

Figure 5.10: Simulation results of two damped harmonic components (5.1) mixture; fdist =
5 Hz, Adist = −20 dB, r = 0.90, N = 200 samples, fs = 128 Hz and damping of r1,2 = 0.90;
the transform length is 128 samples (∆f = 1 Hz), step is one sample; 500 iterations.
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5.2.4 Bearing Fault Detection

This section presents a model example of a faulty bearing vibration signal analysis. The
analysis is only illustrative. A proper analysis is out of the scope of this theses, a reader
is kindly asked to refer to [62] for proper analysis methodology.

Firstly, a model example of simulated signal of bearing with inner race fault signal is
generated according to [63]. The model signal is in Figure 5.11a, resulting spectrogram
in Figure 5.11b, and resulting zologram using the ADZT modification STADZTFB1 in
Figure 5.11c. By comparing the spectrogram and zologram, it is noticeable, the zologram
has improved time resolution while keeping the same frequency resolution.

Secondly, an illustrative analysis of an example real world signal of faulty bearing
with inner race fault is presented. The real world captured signal is in Figure 5.12a,
resulting spectrogram in Figure 5.12b, and resulting zologram using the ADZT modifi-
cation STADZTFB1 in Figure 5.12c. By comparing the spectrogram and zologram, it is
noticeable, the zologram has improved time resolution while keeping the same frequency
resolution. The illustrative real world signal analysis proves that the application of the
STADZTFB1 is indeed possible.
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(a) Model vibration signal waveform.

(b) STDFT spectrogram of the simulated
vibration signal; Hamming window, win-
dow length of 64, and step of 1 sample.

(c) STADZTFB1 zologram of the simulated
vibration signal; Hamming window, win-
dow length of 64, and step of 1 sample.

Figure 5.11: A model example of simulated signal of bearing with inner race fault with
shaft frequency change of 8 %. The simulated model vibration signal and resulting spec-
trogram and zologram, using the ADZT modification STADZTFB1.
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(a) An example of real world vibration sig-
nal waveform.

(b) STDFT spectrogram of a real world vi-
bration signal; Hamming window, window
length of 64, and step of 1 sample.

(c) STADZTFB1 zologram of the a world
vibration signal; Hamming window, win-
dow length of 64, and step of 1 sample.

Figure 5.12: An example of a real world signal of bearing with inner race fault. The gen-
erated model vibration signal and resulting spectrogram and zologram, using the ADZT
modification STADZTFB1.
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5.3 Summary

Original STADZT ignores damped harmonic signal components completely in some cases.
The transform considers spectrum of damped harmonic signal (5.1) to be spectral leakage.
For higher damping coefficient values the signal’s spectrum gets removed completely.
Experiments shown that the spectrum is completely removed where analyzed signal time
constant (5.4) is roughly a magnitude shorter than the transform length N0.

The transform modification was proposed overcoming this issue by limiting the band-
width, see the term definition in Section 4.1, of transformation basis composed of approxi-
mated polynomials. This modification introduces a trade-off between high frequency-time
resolution precision of original ADZT and spectral leakage reduction. The ADZT with
fixed bandwidth to 1 (ADZTFB1) keeps the spectral lines pertaining to a harmonic com-
ponent frequency, while removes spectral leakage as well as sides of particular component
bandwidth. The modification allows to detect closely separated, partially masked, damped
harmonic components with better performance than the STDFT. The best STADZTFB1
performance is achieved with Hamming weighting window.

The example of faulty bearing analysis shows it is possible to employ the STADZTFB1.
It has been shown that the parametric spectral methods, namely Prony and Steiglitz-

McBride, are not suited to detect damped harmonic signal components relatively closely
spaced in frequency. The illustrative example is in Figure 5.3b, where the signal param-
eters are the same as in the second simulation of the Test2, see Section 5.2.2. The model
parameter was set to p = 16, where the power spectrum estimates well and a pole can be
still easily assigned to both components. However, detectability of the weaker component
is questionable without a-priori knowledge of its existence and frequency. The frequency
estimation error for the weaker component is 1.6 Hz.



Chapter 6

Symmetrical Zolotarev Polynomials

Symmetrical Zolotarev polynomials (ZP) are employed in spectral analysis, initially pro-
posed by Radim Špet́ık in his doctoral thesis [35]. Zolotarev polynomial analytical deriva-
tion is described in the thesis as well. The main interest from spectral analysis point of
view is in the symmetrical ZP of the first and the second kind, even and odd polynomials,
respectively. They are described in Section 6.2. There are also Zolotarev polynomials of
the third and fourth kind; they lay however out of the scope.

Since generation of the ZPs is not trivial its numerical stability is of interest. The
polynomial generation is especially crucial for application in spectral analysis; polynomials
of high degrees up to thousands are required to be generated correctly. Evaluation of
symmetrical ZP, symmetrical ZP the first kind in particular, is elaborated from numerical
point of view in Section 6.3.1. The algorithm to generate the symmetrical ZP of the
second kind is closely related to one of the first kind; thus the findings related to the
generation of polynomials of first kind can be approximately applied to generation of the
second kind ones.

Zolotarev polynomials are a generalization of Chebyshev polynomials. Therefore, it is
prudent to first describe the Chebyshev polynomials prior to Zolotarev ones, as is in the
following section.

6.1 Chebyshev Polynomials

The Chebyshev polynomial Tn(x) of the first kind is defined by the relation [64]

Tn(x) = cos(nθ) when x = cos(θ). (6.1)

Variable x on interval ⊂ [−1, 1] corresponds to variable θ on interval ⊂ [0, π]. Nonlin-
ear transformation of variable x onto variable θ converts Tn(x) into function cosnθ as

46
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(c) The spectrum of cosnθ; n = 4.

Figure 6.1: An illustration of mapping of Tn(x) onto cosnθ by transformation x = cos θ
together with its spectrum.

illustrated in Fig. 6.1a and Fig.6.1b, respectively.
The Chebyshev polynomial Tn(x) of degree n can be generated iteratively by following

forward recursion [64]

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . . , (6.2a)

with initial condition
T0(x) = 1, T1(x) = x. (6.2b)

Substituting for x = cos θ in (6.2) results in well-known trigonometric identity

cosnθ = 2 cos θ cos(n− 1)θ − cos(n− 2)θ,

n = 2, 3, . . . .
(6.3)

Nevertheless, this formula can not be used for computing ZP1S.
The solution of the recursion (6.2) results in a formula which describes the Chebyshev

polynomial of the first kind of degree n in terms of power of x as [64]

Tn(x) =
n/2∑
k=0

c
(n)
k xn−2k n

2 ⊂ N, (6.4a)
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where coefficients

c
(n)
k = (−1)k 2n−2k−1

[
2
(
n− k
k

)
−
(
n− k − 1

k

)]

(2k < n)
(6.4b)

and
c

(2k)
k = (−1)k (k ≥ 0). (6.4c)

Thus, the Chebyshev polynomial Tn(x) of order n can be also written as power expansion
with coefficients given by binomial expansion.

From spectral signal analysis point of view the Chebyshev polynomials can be inter-
preted in time spectral domain as follows. If we regard the continuous-time variable x (or
theta) as ”time” then Chebyshev polynomial Tn(x) (or cos(nθ)) can be regarded as a signal
waveform. Chebyshev polynomial cos(nθ) can be converted to a spectral domain using
the Fourier series concept. Because we deal with an even symmetrical polynomial the
Fourier transform degrades into cosine transform. The resulting spectrum of Chebyshev
polynomial cos(nθ) of degree n is given

a` = 1
π

∫ π

0
cos(nθ)e−j`θ2π/T0dθ, (6.5)

where T0 = π for this case. Using the principle of the orthogonality we obtain only one
nonzero spectral coefficient on frequencies ` 2π

T0
. The Chebyshev polynomial and its corre-

sponding spectrum is shown in Fig. 6.1b and Fig. 6.1c, respectively. This interpretation
will be generalized later for Zolotarev polynomials. It should be noted, it is possible to
introduce the opposite interpretation, i.e. spectral coefficient a`, ` = 0, 1, ..., n represent
the impulse response of a filter in time domain and Chebyshev polynomial can be con-
sidered as the frequency response of the respective filter. This approach is used in filter
design using ZP [28, 29, 30, 34]. The standard trigonometric identity holds

T 2
n(x) + (1− x2)U2

n−1(x) = 1,

cos2(x) + sin2(x) = 1
(6.6)

where n is the degree of polynomials, Tn(x) is the Chebysev polynomial of the first kind
and Un(x) is the Chebysev polynomial of the second kind. The Euler formula holds

cos(θ) + isin(θ) = eiθ,

cos(θ) + i
d

dθ
cos(θ) = eiθ.

(6.7)



CHAPTER 6. SYMMETRICAL ZOLOTAREV POLYNOMIALS 49

6.2 Symmetrical Zolotarev Polynomials

The symmetrical ZP of the first kind can be expressed by Chebysev polynomial as

Zm,m(k′, w) = (−1)mT2m(
√
w2 − k′2
1− k′2 ) = (−1)mTm(2w2 − 1− k′2

1− k′2 ), (6.8)

where k′ is the modulus of elliptical functions. The symmetrical ZP of the second kind
can be expressed by Chebysev polynomial as

Zm−1,m−1(k′, w) = (−1)m 2
1− k′2 Um−1(2w2 − 1− k′ 2

1− k′ 2 ). (6.9)

Both types of ZP can be generated using an effective and robust algorithm [28, 34]. By
substitution x = 2w2−1−k′2

1−k′2 in (6.6) we obtain standard identity for ZP as

T 2
m(2w2 − 1− k′2

1− k′2 ) + 4 (1− w2)(w2 − k′2)
(1− k′2)2 U2

m−1(2w2 − 1− k′2
1− k′2 ) = 1. (6.10)

Zolotarev cosine can be obtained by comparing the ZP standard identity (6.10) with
the trigonometric one (6.6) as

Zcos(m, k′, φ) .= (−1)mZm,m(k′, w)|w=cosφ =
m∑
`=0

a(2`)T2`(cosφ) =
m∑
`=0

a(2`) cos 2`φ.

(6.11)
An example of Zcos is in Fig. 6.2, where the meaning of k′ is shown. The Zolotarev sinus
could be obtained from the identities in the same fashion as

(−1)m
√

(1− w2)(w2 − k′2)Zm−1,m−1(w, κ) = 2
1− k′2

√
(1− w2)(w2 − k′2)

m−1∑
`=0

α(2`)U2`(w).

(6.12)
However, the square rooted term is negative in interval of w ⊂ (−k′2,+k′2): the result
is in complex range. Prof. Vlček developed a simple modification [65], which allows to
express Zolotarev sinus in real range as

Zsin(φ) = (−1)mw
√

1− w2(1− k′2)Zm−1,m−1(w, κ)|w=cosφ,

= 2w
√

1− w2
m−1∑
`=0

α(2`)U2`(w)|w=cosφ,

=
√

1− w2
m∑
`=1

β(2`− 1)U2`−1(cosφ).

(6.13)

The modification actually forces k′ = 0 in 2
1−k′2

√
(1− w2)(w2 − k′2). The Zsin(φ) is

in real range; However, there is a price to pay: its non-equiripple behavioral in w ⊂
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(−1, k′) ∪ (k′, 1), see Fig. 6.3.
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(a) Zcos(φ)|m = 4, k′ = 0.1
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(b) Zcos(φ)|m = 4, k′ = 0.2

Figure 6.2: An example of Zolotarev cosine of the first kind (6.11).
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(b) Zoomed vertical axis.

Figure 6.3: An example of Zolotarev sinus of the second kind (φ)|m = 4, k′ = 0.5 (6.13).

6.3 Symmetrical Zolotarev polynomial of the first kind

The ZP1S can be expressed using the Chebyshev polynomial of the first kind as

Zp(w, k′) = (−1)
p
2Tp(

√
w2 − k′2
1− k′2 ) p

2 ⊂ N, (6.14)

where p is the degree of Chebyshev polynomial as well as of the ZP1S, see [28]. The
ZP1S is defined on a standard interval for polynomial approximation w ⊂ [−1, 1]. The k′

is the modulus of elliptical functions. The ZP1S main features are equiripple behavioral
on two disjoint intervals w ⊂ [−1, k′] ∪ [k′, 1] and elevated central lobe on the interval
w ⊂ [−k′, k′]. Thus, the k′ can be interpreted as the half-width of the central lobe bounded
by intersections with the absolute values1 of one, see Fig. 6.4. The parameter k′ is given
on the interval [0, 1). The polynomial degree must be even as the polynomial Zp(w, k′) is
even symmetrical. Note that the polynomial has p zeros.

The ZP are members of an elliptical functions family of which mathematical discipline
is rather difficult. To understand the ZP1S nature with ease we can approach the Zolotarev
polynomial as a trigonometric function. Employing this approach the ZP1S is expressed

1The central lobe of the ZP1S of degree p is positive or negative when p
2 is even or odd, respectively.
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Figure 6.4: The symmetrical Zolotarev polynomial of the first kind Zp(w, k′) for p = 8
and k′ = 0.1.

by the Chebyshev polynomial of the first kind: by using the substitution w = cos θ for
ZP1S, denoted as Zp(w, k′)|w = cos θ, we obtain a function, which can be interpreted as
a cosine with the central lobe elevated, see Fig. 6.5a. Similar approach is used also in
[28] for the approximation of FIR filters by a ZP. For w = cos θ and k′ = 0 the Zp(w, k′)
degenerates to the trigonometric cosine of the degree p. This can be easily justified:
by substituting k′ = 0 in (6.14) we obtain Zp(w, k′) = (−1) p

2Tp(w), and by using the
substitution w = cos θ we obtain cos pθ.

The global extreme of the ZP1S is influenced by both k′ and p: its absolute value gets
larger when k′ or p get larger. This phenomena become obvious by looking at Fig. 6.5.
Compare Fig. 6.5a with Fig. 6.5b, where the degree is the same and k′ is 0.10 or 0.11,
respectively. Furthermore, compare Fig. 6.5a with Fig. 6.5c, where the k′ is the same and
the degree is 16 and 20, respectively. sRecent analysis shows the ZP1S are orthogonal in
both disjoint intervals w ⊂ [−1, k′] ∪ [k′, 1] for fixed k′ and degrees p = 2, 4, 6, . . . . These
findings are yet to be published.

The equation (6.14) can be rewritten using

T2n(x) = Tn(2x2 − 1)

as
Zp(w, k′) = (−1)

p
2T p

2
(2w2 − 1− k′2

1− k′2 ) p

2 ⊂ N, (6.15)

Use of this equation for future generation of ZP1S is beneficial compared with use of (6.14)
for three reasons. Firstly, it lowers the upper index of the sum in equation (6.4a) to the
half. Secondly, the number of iterations of recurrence (6.2) is also reduced to the half.
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Figure 6.5: Symmetrical Zolotarev polynomial of the first kind Zp(w, k′)|w = cos θ in
Fig. a-c; and together with its spectral coefficients in Fig. d-f .

Thirdly, the argument of T p
2
(x) is free of the square root which is a rather problematic

computational operation. For all three reasons, the use of equation (6.15) enables to
enumerate the ZP1S with less errors compared with equation (6.14).

It is also worthy to note that the ZP1S can be alternatively expressed as the linear
combination of the Chebyshev polynomials Tn(x) as [35, 28].

Zp(w, k′) = (−1)
p
2

p
2∑
`=0

a(2`)T2`(w) p

2 ⊂ N. (6.16)

By using the substitution w = cosθ in (6.16) we obtain

Zp(w, k′)|w=cosφ =
p
2∑
`=0

a(2`) cos(2`θ) p2 ⊂ N. (6.17)
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The a(2`) coefficients2 are, in fact, the coefficients of the Fourier series3 [66]. Therefore, the
a(2`) coefficients can be regarded as the spectral coefficients of Zp(w, k′). Equation (6.17)
expresses the spectrum of ZP which involves generally p

2 spectral lines. The expansion
(6.16) can be generally used for the approximation of an arbitrary continuous function
over a finite interval [−1, 1]. One possible solution to how to generate the coefficients
a(`) can be found in e.g. [67]. Another very effective and simple approach, in which we
are interested, can be derived from the linear differential equation for ZP [28] resulting in
backward recursion with time-varying coefficients.

Note that the symmetrical Zolotarev polynomials are orthogonal on disjoint intervals
w ⊂< −1,−k′ > ∪ < k′, 1 >. See Appendix B in Chapter 10. This subsequently means
that Zcos(φ) is orthogonal in the interval of w ⊂< −1,−k′ > ∪ < k′, 1 > |w=cosφ. The
orthogonality of Zsin in the same interval is questionable; however, we omit this and
consider Zsin to be almost orthogonal.

This paragraph introduces a discretization of continuous-time variables x and θ which
is needed for computing ZP1S on a computer. All above defined formulas shall be used
in a discrete-time manner requiring proper sampling of continuous-time variables x or
θ. The discretization can be done by letting x = iT , where i = 0, 1, 2, ... and T is the
sample step for variable x. Similarly, the variable θ is discretized by letting θ = Ti, where
i = 0, 1, 2, .... From this point forward the discussion will be supposing that all schemes
of ZP1S are discrete-time functions. Let us remember that when a proper sample step
is used then the behavior of a discrete-time method is close to a behavior of the original
continuous-time one. We use sample step approximately T = 1/104 for interval [−1, 1] or
[0, π].

6.3.1 Methods Of ZP1S Generation

The goal of this section is to explore and compare selected methods for computation of
Symmetrical Zolotarev Polynomials of the first kind ZP1S and its spectrum. Such analy-
sis is essential before approaching to symmetrical ZPs utilization in spectral analysis. In
spectral analysis the degree of the ZP1S is related to the number of samples of analyzed
signal segments, and it is also directly related to the order of a filter. Therefore, utilizing
ZP1S in both applications requires to generate polynomials with relatively high degree,
typically, degree of hundreds. There are two typical tasks in computing ZP: one is the
computation of actual ZP, while the ZP spectral coefficients computation. No method
had been able to generate the spectrum of polynomials satisfying high degree [31], until
the recursive algorithm was developed [28]. Nevertheless, based on findings in [28], and

2Since the ZP1S is even symmetrical function only even coefficients a are nonzero.
3In this case the Fourier cosine series.
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others, there are several methods of the computation of Chebyshev polynomials or ZP or
their coefficients (spectra) e.g. [67], [68], [69], [70], [71]. However, the usability boundaries
of these methods and a detailed numerical comparison with each other have not yet been
systematically explored. It is also unclear which degree of ZP1S or its spectrum can be
achieved. In task of actual ZP1S computation we decided to use two often used methods:
Chebyshev recursion [64] and power expansion with binomial coefficients [64]. For com-
putation of ZP1S spectral coefficients we employed backward recursion [28]. An empirical
technique determining if the results is not a valid polynomial was developed. Selected
ZP1S computational methods in the range of ZP1S parameters are distinguished from
each other using this technique. dynamic range (DR) during the computation and its
stability explored as well.

Possible schemes of ZP1S computation are defined in the following text. Any ZP1S of
order p can be computed using two basic approaches. Firstly, direct computation in “time”
domain: by using power expansion with binomial coefficients (6.4a) or by implementing
the forward recursion (6.2). Both methods in “time” generate a Chebyshev polynomial
of degree p along with the transformation of parameter x onto θ. The parameter x is
transformed as

x = 2 cos2θ − 1− k′2
1− k′2 (6.18)

in terms of (6.15). Secondly, by computing polynomial in “spectral” domain: evaluating
spectral coefficients a` using difference backward recursion by Vlcek [28] followed by the
inverse (Fourier) cosine transform4 yielding the “waveform” Zp(w, k′)|w=cosφ (6.17). There
are other possibilities of computing ZP1S, as mentioned before. For example, using the
factorized form given by ZP1S zeros [28], or rather complicated methods using Remez
algorithm or other approaches based on least deviation and polynomials with weights in
“time” domain [69] and [68]. But we are interested in very effective recursive method
[28] promising the computation of ZP spectra of high degree and in its counterpart in the
“time” domain (6.2). The aim is to compare the numerical behaviour of these selected
methods.

ZP1S computation in “time” domain

This subsection briefly discusses and compares the numerical behaviour of linear time
variant (LTV) recursion (6.2) and the power expansion with binomial coefficients (6.4a),
both used for computing a Chebyshev polynomial of degree p.

4For discrete-time functions by discrete time cosine transform.
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Computation using expansion of Tn(x)

This method uses binomial coefficients given by equation (6.4a) to generate Chebyshev
polynomials Tn(x). Due to use of binomial coefficients the computation demands rather
big dynamic range [72] and then poor computational precision can be expected. In con-
sequence only the low degrees of ZP1S can be generated using this technique.

Computation by using LTV recursion

This method of computing Chebyshev polynomials is based on using recursion (6.2) with
the substitution (6.18). The discretized version of equation (6.2) can be written as

Tn[i] = 2x[i]Tn−1[i]− Tn−2[i], n = 2, 3, . . . ,

i = 0, 1, . . . , N − 1.
(6.19)

with the initial condition
T0[i] = 1, T1[i] = x[i], (6.20)

where N is the number of points at which ZP1S is sampled. Parameter N is given by
using sample step T and the definition scope T0 of variable x or θ: N = T0/T . In our
case we use N = 104.

Recursive schemes similar to (6.2) no matter if they are time-invariant or time-varying
are known to be very effective and stable when used for limited number of samples even
when fixed-point arithmetics is used [66, 73, 74]. But to our knowledge, no systematic
study of numerical behaviour of this type of LTV recursion has not yet been performed for
the special case of computing of ZP1S of very high degree. If recursions (6.2) or (6.3) are
used then the zeros of resulting Chebyshev polynomials are almost equidistantly spread
in the intervals [−1, 1] or [0, π]. In the latter case of Tn(x) = cos(nθ) interval between
zeros is precisely equidistant. However, if the Chebyshev recursion (6.2) is applied to
compute ZP1S, especially for higher values of k′ or higher ZP1S degree, its zeros are
pushed towards the edges of both the definition scopes [−1, 1] and [0, π]. Hence, higher
errors in computing ZP1S can be expected. The recursive schemes (6.2) are known to be
very effective and stable when used for limited number of samples. The scheme is stable
even when fixed-point arithmetics is used. Detailed numerical study of the recursive
equation of this type can be found in e.g. [73].

Summary of methods computing Tn(x). We briefly summarize comparison of
methods of Tn(x) computing using either the Chebyshev recursion (6.2) or using power
expansion with binomial coefficients (6.4a). The latter method is expected to has worse
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numerical behavior. The evaluation of the binomial coefficients by equation (6.4b) causes
severe problems due to high dynamic range. We can see in (6.4a) the values of coef-
ficients c(n)

k can be up to twice greater than the values of binomial coefficients
(
n−k
k

)
,

which results in additional increasing of dynamical range. Nevertheless, there are some
modified schemes of computing binomial coefficients (6.4a) which offers better numerical
performance, e.g. [75]; however, we did not implemented these schemes. Due to described
reasons we favor the use of Chebyshev recursion (6.2).

Generation of ZP1S using spectral coefficients

The algorithm to compute ZP1S spectral coefficients is derived by Vlcek [28]. The algo-
rithm for computing ZP1S is just one of a family, of which algorithms are able to generate
various kinds of ZP. The algorithm for ZP1S computation is a backward recursion with
time-varying coefficients, and it can be described by

d1[`] a(2`− 6) = d2[`] a(2`− 4) + d3[`] a(2`− 2)

+ d4[`] a(2`)

` = m+ 2,m+ 1,m, . . . , 3

(6.21)

where d1 = m2 − (` − 3)2, d2 = 3(m2 − (` − 2)2) + (2` − 4)(2` − 5)k′ , and d3 = 3(m2 −
(` − 1)2) + (2` − 2)(2` − 1)k′ are time-varying coefficients. The m = p

2 is half of degree
p. The computational algorithm based on the formula is in Table 6.1. The result is set of
spectral coefficients a`, ` = 1, . . . , p. The spectral coefficients are transformed into ZP1S
using the inverse cosine series5.

given m = p/2, k′

init- a (2m) = (1− k′2)−m, a (2m+ 2) = 0,
alisation a (2m+ 4) = 0

body
(for ` = m+ 2 to 3)[

m2 − (`− 3)2] a(2`− 6) =
−
[
3(m2 − (`− 2)2) + (2`− 4)(2`− 5) k′2

]
a(2`− 4)

−
[
3(m2 − (`− 1)2) + (2`− 2)(2`− 1) k′2

]
a(2`− 2)

−
[
m2 − `2] a(2`)

end )

Table 6.1: Recursive evaluation of the coefficients a(2`) for symmetrical Zolotarev poly-
nomial of the first kind Zp(w, κ) = (−1)m∑m

`=0 a(2`)T2`(w),

5The discrete inverse cosine transform (iDCT)
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6.3.2 Evaluation of ZP1S generation methods numerical behav-
ior

In this section we explore numerical behavior of the ZP1S computational methods de-
scribed in the previous section. Firstly we show that both LTV recursion (6.2) and (6.21)
are stable. Secondly, we explore a dynamic range of the methods. And thirdly, we apply
empirical criterion onto the methods results.

In case of recursion stability determination we employ following criteria. The first
stability criterion states: if cumulated error throughout recurrence iterations is bounded
by a linear function then the recursive system is considered stable. A recurrence system
has to have a limited number of iterations. This approach is based on the one described
in [73]. As a second stability criterion we chose a more analytical approach. We consider
each iteration of the LTV system as a LTI system. We show that for every iteration of
the LTV system every particular LTI system is stable.

The empirical criterion is based on a fundamental theorem of algebra: the number of
zeros of every polynomial is uniquely given by its degree. We facilitate this polynomial
property by counting the number of zeros in waveform generated by the tested method. If
a number of zeros differs from a given polynomial degree then the generated waveform is
definitely not the desired ZP1S polynomial. This criterion is not able to validate a method,
but it is capable to point at one which is definitely unusable in a subset of ZP1S parameter
space.

Stability of Chebyshev LTV forward recursion

In this section we show illustrative results confirming the stability of Chebyshev LTV for-
ward recursion (6.2). We use previously drafted stability criterion: we adopt and slightly
modify the approach suggested in [73]. We evaluate cumulative sums of quantization er-
rors of quantized recurrence. The computation using 32-bit floating-point IEEE number
format is considered as “precise”. We compare the computation of quantized recurrence in
32-bit fixed point arithmetics with “precise” one. For the recursion (6.2) error is defined
as

ern[i] = Tn[i]− T̂n[i] i = 0, 1, 2, ..., N − 1, (6.22)

where T̂n[i] represents the quantized computation version, while Tn[i] represents the “pre-
cise” one. The variable n is an index of recurrence iteration. The p stands for the given
polynomial order and N for the number of samples taken from respective definition scope.
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The cost function given by the sum of errors is estimated according to

J [n] = 1
n

N−1∑
i=0
|ern[i]|, n = 1, 2, . . . , p. (6.23)

The stability criterion is as follows: if the function J [n] is bounded by a linear function
then the recursion in question is stable for limited number of iterations within the finite
interval [1, p], where p <∞.

The accumulative error J [n] for Chebyshev forward recurrence for k′ = 0.1 and degree
p = 100 is shown in Fig. 6.7. The function J [n] is bounded, that is, any linear function
with a properly chosen slope gives greater values than J [n]; therefore, the recursion can
be considered stable. We verified this criterion to be valid up to degree 2000 with various
values of k′.

Another interesting property of computed ZP1S waveform by the Chebyshev recursion
method reveals the shape of cumulated error throughout θ, “time” dimension. This error
which is than cumulated is given by

er2n[j] =
j∑
j=0

Tn[j]− T̂n[j] j = 0, 1, 2, ..., N − 1,

n = 1, 2, . . . , p.
(6.24)

The cumulative sum of error between “precise” computing Tn[i] and quantized computing
T̂n[i] is shown in Fig. 6.6 for different polynomial degree within the interval [3, 100]. One
can see that the error rapidly grows at the centre of definition scope, where the main lobe
of ZP1S is placed. The error at the centre of definition scope gets bigger as polynomial
degrees or values of k′ increases. For higher polynomial degrees are errors the bigger as
can be seen in Fig. 6.6 when we examine curves from bottom to up. This error increase is
the consequence of the central lobe maximum value and of ZP1S zeros pushing towards
the edges of the definition scope. For higher polynomial degree and constant elliptical
modulus k′ the main lobe of ZP1S is higher and wider pushing zeros more to the ends of
definition scope as can be seen in Fig. 6.5a and 6.5c.

Stability of LTV backward recursion

The backward LTV recursion is given by (6.21) and Tab. 6.1. To analyze its stability we
employ the first of described stability criteria. For recursion (6.21) we use the error of
spectral coefficients given by

errn[`] = a[`]− â[`] ` = 3, 4, ..., p+ 2, (6.25)
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Figure 6.6: The cumulative error between “precise” and quantized ZP1S waveform cumu-
lated in “time” domain for k′ = 0.1 and degrees of p = 3, 4, . . . , 100.

where the â[`] represents the quantized version with 32-bit fixed-point arithmetics, and
the a[`] represents version using 32-bit IEEE floating point arithmetics, which is again
considered as “precise”. The p stands for the given polynomial degree and the n for
iteration index of the recursion. The cost function is now given by the cumulative sum of
errors (6.25) as

J̃ [n] =
n+2∑
`=3
|err[`]|, n = 3, 4, . . . , p+ 2, (6.26)

The stability of backward LTV recursion (6.21) can be verified similarly to the stability
of forward Chebyshev recursion (6.2). Again, if J̃ [n] is a bounded (or linear) function
of the index iteration n then the algorithm stability is ensured for limited number of
iterations within the finite interval [3, p+ 2], where p < ∞. The shape of accumulated
error J̃ [n] (6.26) is shown in Fig. 6.8. This function is clearly bounded and has a similar
shape as function J [l] in previous Fig. 6.7. The stability was experimentally proved for
different polynomial degrees within the interval [10, 2000]. Furthermore, one can see that
the recursion (6.21) gives less maximum of accumulated error than the Chebyshev forward
recursion (6.2): compare values 6 × 10−7 with 4 × 10−6. Also the slope of function J [l]
at the beginning and at the end is greater than the slope of function J̃ [l]. Thus, it can
be concluded, the backward recursion (6.21) is more robust with respect to stability and
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Figure 6.7: The cumulative error (6.23) comparing the quantized ZP1S computation using
Chebyshev forward recursion (6.2) with the “precise” computation version; for k′ = 0.1
and degree p = 50.

gives more precise results than the forward Chebyshev recursion (6.2). It is interesting to
note that the stability of recursion improves with increasing number of iteration indexes
n. This is illustrated by decreasing the slope (or “saturation”) of J̃ [n] with increasing
iteration index n. It can be concluded that recursion (6.1) is stable. Note that the
cumulative error of the backward recursion increases as the polynomial degree increases
in linear, not exponential, rate.

The second stability criterion examination follows. The analysis of this type of re-
cursion can be performed using a state-space equation and transition matrix (e.q. [74]).
The dependency of coefficients d[`] on both m = p

2 and ` parameters is nonlinear. The
dynamical ranges corresponding to time-varying coefficients d[`] are significantly different.
For both these reasons we approach the LTV system as a set of LTI systems fixed for
each iteration rather than to use the analysis of transition matrix behaviour. Analyzed
backward LTV recursion can be interpreted as IIR filter of order 6 with time-varying co-
efficients. When we trace parameters of the recursion in each iteration then the stability
of this recursion during the whole iteration process can be verified using pole positions
given by the denominator of the transfer function. The idea behind this approach is very
simple. We substitute the LTV system with a linear time-invariant one. That means for
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Figure 6.8: The cumulative error (6.26) comparing the quantized ZP1S computation using
backward recursion (6.21) with the “precise” computation version; for k′ = 0.1 and degree
p = 200.

each fixed iteration instant the system is supposed to be LTI with transfer function

H`(z) = z6

1− d2[`]
d1[`]z

2 − d3[`]
d1[`]z

4 − d4[`]
d1[`]z

6
, ` = 3, ..., n+ 2 (6.27)

where dx[`] are time varying coefficients defined in (6.21). Resulting denominator of
the transfer function represents a polynomial for each iteration index `. Roots of this
polynomial, poles of transfer function H(z), are inspected and pole positions and the
maxima of pole modulus are checked. This evaluation process is repeated throughout
whole iteration process. One chosen result is illustrated for ZP1S parameters of k′ = 0.1
and p = 100 in Fig. 6.9, which illustrates the trace of pole positions during the whole
iteration process. All pole modulus during the iteration process are less then one: hence,
ensuring the stability. The values of poles modulus decreases with iteration index. The
best test results (the lowest values of poles modulus: the greatest distances of poles from
the unit circle) are obtained for low values of k′: k′ ≤ 0.2. Nevertheless, for all permissible
values of k′ ⊂ [0, 1] the solution is stable. The stability was experimentally proved for
different polynomial degrees within the interval [10, 2000].
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Figure 6.9: Pole positions of LTI transfer function 6.27 for all iterations of LTV backward
recursion for given ZP1S parameters: k′ = 0.1 and degree p = 200

Dynamic range

Dynamic range needed for all selected methods for the computing ZP1S was checked for
all polynomial degrees within the interval [10, 2000]. The result is as expected. Dynamic
range needed for binomial coefficients computing (6.4a) is much greater than for the LTV
forward Chebyshev recursion (6.2) and also greater than backward LTV recursion (6.21).

For example, for degree N = 100 and k′ = 0.1, the range of binomial coefficients c(n)
k

in eq. (6.4b) values is approximately 1037, while for LTV forward recursion is about 106

and for LTV backward recursion and its coefficients a(2`) approximately 105. When we
compare the dynamic range of the floating-point 32-bit IEEE number format with the
range needed for the computing binomial coefficients we can see that the 32-bit floating-
point number format is not sufficient for safe computing these coefficients. On the other
hand dynamic ranges for both LTV recursions are comparable and much less than the
dynamic range of the 32-bit floating-point number format. This is the reason why both
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recursions work properly while binomial coefficients do not.

Empirical test criterion

The empirical criterion tests if a generated waveform representing ZP1S satisfies the
number of zeros. The number of zeros is uniquely given by the polynomial order p.
Therefore, we can find the number of zeros of computed polynomial ZP1S and compare it
with the polynomial order p. If the number of found zeros differs from the given polynomial
degree then the tested waveform ZP1S can not be a proper Zolotarev polynomial. The
simple and robust enough way of enumerating the number of zeros is the zero crossings
count (ZCC)

ZCC (y) =
N−1∑
i=0

∣∣∣∣∣diff {sgn(y[i])}
2

∣∣∣∣∣, (6.28)

where y[i] is tested discrete generated polynomial. Using (6.28) we can define the zero
count error (ZCE) as

ZCE(y, p) = −p+
N−1∑
i=0

∣∣∣∣∣diff {sgn(y[i])}
2

∣∣∣∣∣. (6.29)

Thus, if the ZCE computed by (6.29) is bigger than zero then the generated waveforms do
not meet ZP1S properties. If the number of zeros of computed polynomial ZP1S is equal
to the given polynomial order then this ZP1S might be the proper polynomial. Tests for
all selected methods of ZP1S computation are using 32-bit IEEE floating number format.
All waveforms are represented by N = 104 samples.

The results of ZCE evaluated for polynomials generated using power expansion with
binomial coefficients (6.4a) is in Fig. 6.10. We can see that the method (6.4a) definitely
fails if the polynomial degree is greater than 80. Tested method computes the waveform
based on (6.15). If the waveform is computed based on (6.14) the method fails if the degree
reaches ≈ 35. In case a waveform generated by LTV Chebyshev forward recursion (6.2)
the results show correct number of zeros throughout all values of tested ZP1S parameter
space: k′ ⊂ (0, 1) and p = 3, · · · , 2000.

The results of the ZCE evaluated for a waveform computed using the LTV backward
recursion (6.21) followed by the iDCT are in Fig. 6.11. We can see that it should be
possible to generate ZP1S of high degrees; however the interval of k′ is being severely
limited with increasing degree.
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Figure 6.10: The ZCE evaluated for a waveform generated using power expansion with
binomial coefficients (6.4a); non black areas denote the ZP1S parameter space where the
generated waveform definitely does not meet ZP1S properties.

6.3.3 Summary

The study of selected ZP1S computation methods reveals that the one employing the
Chebyshev LTV forward recursion (6.2) is the most suitable method for computing ZP1S:
the empirical criterion shows the number of zeros matching the polynomial degree through-
out whole parameter space k′ ⊂ (0, 1) and p = 3, · · · , 2000; furthermore, the study con-
firms the stability of the LTV forward recursion in the same ZP1S parameter space.

In case of method using the LTV backward recursion followed by the iDCT the empir-
ical criterion shows much worse performance, compared with forward recursion. However,
the analysis of stability shows the LTV backward recursion more stable than the forward
one. This seemingly contradicts, but it can be explained as follows. Both the LTV back-
ward recursion and the iDCT are not free of the error propagation caused by quantization
used in the numerical computation of ZP1S on a digital system. The problem is, we are
unable to separate errors of the LTV backward recursion from errors caused by iDCT.
Thus, one can expect that this method has worse results than direct computing ZP1S
by forward LTV recursion (6.2). Since the LTV backward recursion is stable, even more
stable than forward, it is obvious that the iDCT introduces greater errors during the com-
putation compared with the LTV backward recursion. The iDCT errors are the result
of the accumulation of cosines weighed by the spectral coefficients a(2`) in (6.17). More
detailed analysis of iDCT errors is out of the scope of this paper; however, it could prove
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Figure 6.11: The ZCE evaluated for a waveform generated using the LTV backward
recursion followed by the iDCT; non black areas denote the ZP1S parameter space where
the generated waveform definitely does not meet ZP1S properties.

interesting.
In the case of employing the ZP for design of FIR filters we have shown that the

methods based on backward recursion are stable and capable of generate a filter coefficients
of high orders up to thousands. However, corresponding filter frequency response, which
is bounded with a filter coefficients by inverse Fourier series, might be problematic in
some cases. Therefore, it seems to be advisable to use the LTV forward Chebyshev type
of recursion to generate a filter frequency response.

We intend to focus future research on errors of iDCT, and generally on reducing errors
of latter methods for computing ZP1S.

Numerical study of computing symmetrical Zolotarev polynomials of the first kind
shows that both recursions, the forward recursion for direct computing ZP1S and the
backward recursion for computing spectrum of ZP1S, are stable. Method employing for-
ward LTV Chebyshev recursion is the one most suitable one for computing the polynomial.
For computing spectrum of the polynomial the Vlcek backward recursion has the best per-
formance with respect to errors. This study also reveals that the method of computing
ZP1S by backward recursion followed by iDCT has much worse numerical behavior than
the one using forward recursion.



Chapter 7

Spectral Analysis using Zolotarev
Polynomials

History of Zolotarev polynomials (ZP) usage for spectral analysis has begun with Radim
Špet́ık’s definition of discrete Zolotarev Transform (DZT) in his dissertation thesis [35].
However, the DZT coefficients were never evaluated directly in the time domain. Radim
Špet́ık developed an alternative method working in the spectral domain, the ADZT.
As a consequence, all conclusions regarding the DZT spectrum properties, in his thesis,
are based on the ADZT resulting spectrum. An extensive study of ADZT features was
conducted in Vćlav Turoň’s dissertation thesis. However, uncertainty arises whether the
described properties of the ADZT are truly DZT features or rather artifacts produced by
the ADZT non-linear algorithm. The ADZT uses approximated polynomials, due to the
complexity of ZPs generation. The basis optimization is conducted in the spectral domain
to accelerate computation thanks to the FFT computational efficiency, see chapter 4 for
computational complexity analysis. This approach is theoretically sound; however, the
algorithm performs hard decisions based on the periodogram DFT spectrum’s phase and
amplitude. The DFT periodogram spectrum stochastic properties are quite complex to
analyze mathematically [1]; moreover, the hard decisions performed by the algorithm make
the theoretical analysis even less feasible. It is not clear whether, in combination with
the used approximated symmetrical ZPs, the ADZT produces artifacts in the resulting
spectrum. This is the main drawback preventing from wider usage of the ADZT.

We need to make certain about the DZT spectrum properties, and consequently ap-
proving or disapproving the ADZT. The next logical step is to perform DZT spectrum
evaluation in the time domain using actual symmetrical ZPs. It is much more feasible
to link features of the resulting spectrum to the basis properties in the time domain.
Firstly, the parameters of the symmetrical ZPs are directly observable in the polynomial
waveform. And, secondly, symmetrical ZPs have only a single parameter, the modulus

67
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of elliptical functions k′, related to the time selectivity feature of the polynomials, see
Section 6.2. Unlike the approximated ZPs which have two parameters, the bandwidth m

and non-stationary index k, see Section 4.1.
The ADZT significant properties are stated in the following Section 7.1. The DZT

definition along with its spectrum coefficients evaluation are in Section 7.2. A novel
method of symmetrical ZPs utilization for spectral analysis is proposed in Section 7.3.
The results of the novel method are compared with the ADZT in Section 7.4.

7.1 ADZT Spectrum Significant Properties

The ADZT spectrum properties and behavior of the algorithm in general is described
in [36] in detail. Here, only the most significant ADZT properties are mentioned. The
ones the most questionable with respect to the ADZT usage. The analysis of proposed
spectrum evaluation in time domain focuses on these particular properties.

One of the most noticeable ADZT short-time spectrum features is the intermittent
spectrum of stationary signals. A model example is a sum of two real harmonic compo-
nents of different frequencies, the same amplitudes, and arbitrary phases, see Figure 7.1a.
The STADZT spectrum of the analyzed signal is in Figure 7.1b. The energy corresponding
to the component with lower frequency is continuous in time, almost constant. However,
the second component’s energy distribution in time is not constant, even though the
component is stationary. One can observe that the energy distribution of the second
component is correlated to the analyzed signal envelope. The sum of two harmonic com-
ponents of different frequencies forms an envelope with the beat frequency. The spectrum
of the second component intermits at time instances where the beat frequency envelope
crosses zero, see Figure 7.1c illustrating this effect. This behavior can be interpreted as
imposed local signal energy distribution properties on the global ones. The global signal
energy properties are related to the signal long-term integral properties, interval within
the signal can be considered stationary. The local signal energy properties are related to
the signal envelope. On the first hand, non-stationary transforms in their essence address
the trade-off between the local and global signal energy properties. Thus the behavior
is expected from that perceptive. For example, the Hilbert Huang transform exhibits
similar behavior, which is shown in [35]. On the other hand, there is no direct control of
how distinctive this feature is. One representation of a successful attempt is the ADZT
modification for damped harmonic signals, see Section 5.2.1. Furthermore, the spectral
lines at the positions of envelope absolute value minimums are abruptly removed, which is
a consequence of the hard decisions within the algorithm. In the case of a more complex
analyzed signal, of which composition is less clear and with a possibility of noise presence,
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Figure 7.1: An illustration of STADZT spectrum behavior with respect to analyzed signal
envelope; addition of two real harmonic components with unit amplitude, frequencies
f1 = 32fs/N and f2 = 36fs/N with depicted signal envelope (first), STADZT zologram
of the analyzed signal (second), and absolute value of the second component’s spectral
coefficient (third). Taken over from [36] with the author’s approval.

the resulting spectrum is hard to interpret.
This behavior impeded further reasearch in field of signal coding using the ADZT,

as proposed in [55], or rather its modification Approximated discrete Zolotarev cosine
transform (ADZCT) [76].

7.2 Discrete Zolotarev Transform

This section briefly defines the Discrete Zolotarev Transform (DZT) for the purpose of
explaining its nature, and to allow to make further assumptions and conclusions. Radim
Špet́ık’s dissertation thesis [35] contains detailed definition along with proof of its bi-
orthogonal property.

The DZT employs a family of symmetrical Zolotarev polynomials as its basis. The
Zolotarev polynomials can be expressed as a linear combination of Chebyshev polynomials
with a certain set of coefficients, see Section 6.2. Analogically, the DZT spectrum can be
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expressed as a linear combination of the DFT spectrum, which can be written as

Sz = ZWs, (7.1)

where s is analyzed signal, W is the DFT basis composed from exp(2πµnT ), µ ∈ 〈0, N −
1〉, n ∈ 〈0, N − 1〉 and Z matrix contains the coefficients linking the DZT basis to the
DFT basis as WZ = ZW. Thus the DZT spectrum can be expressed using the DFT
spectrum as

Sz = ZS, (7.2)

where S is the DFT spectrum, S = Ws.

Zolotarev Series

The Zolotarev series [35, 41] expansion can defined analogically to trigonometric series
expansion.

W`(t, kr, ki) = Zexp(`, iωt, kr, ki) = Zcos(`, ωt, kr) + iZsin(`, ωt, ki), (7.3)

where ω = 2π for 0 ≤ t ≤ 1, ` is the degree of ZP and k′ is modulus of elliptical functions.
The expression can be simplified with parameters kr and ki in mind as

W`(t, kr, ki) = Zexp(`, iωt) = Zcos(`, ωt) + iZsin(`, ωt) (7.4)

Note that Zexp of a higher degree cannot be obtained from a lower degree function be
scaling.

The Zexp must be normalized to exhibit normal properties as

γ2
` 〈Zexp′(`, i2πt) , Zexp′(`, i2πt) 〉 = 1, (7.5)

where Zexp′ is normalized basis, ` is the degree of ZP and γ is normalization coefficient.
Since the ratio between the real and imaginary part of the Zexp generally vary; it is
reasonable to scale the real and imaginary parts independently. While having in mind

〈 cos(2πkt) , sin(2πlt) 〉 ≡ 0, ∀k, l ⊂ Z, (7.6)

and subsequently

〈Zcos(k, 2πt) , Zsin(l, 2πt) 〉 ≡ 0, ∀k, l ⊂ Z, (7.7)
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yielding
γ2
r,` 〈Zcos(`, 2πt) , Zcos(`, 2πt) 〉 = 1

2 , (7.8)

γ2
i,` 〈Zsin(`, 2πt) , Zsin(`, 2πt) 〉 = 1

2 . (7.9)

The normalized Zolotarev series denotes as

Zexp′(m, i2πt) = 1
γr,`

Zcos(`, 2πt) + i
1
γi,`

Zsin(`, 2πt), (7.10)

where
Zcos′(`, 2πt) = 1

γr,`
Zcos(`, 2πt), (7.11)

and
Zsin′(`, 2πt) = 1

γi,`
Zsin(`, 2πt). (7.12)

The normalization constants can be computed as

γr,` = 1√
2

1√
〈 Zcos(`, 2πt) , Zcos(`, 2πt) 〉

, (7.13)

and
γi,` = 1√

2
1√

〈 Zsin(`, 2πt) , Zsin(`, 2πt) 〉
. (7.14)

Discrete Zolotarev Transform Definition

The DZT basis can be defined based on the Zolotarev series as

Z`,n
N = 1√

N
Zexp

(
`,
i2πn
N

)
, `, n = 0 . . . N − 1, (7.15)

where ` is the degree of ZP, n is the time index and N is the number of samples of the
basis. Consequently, the basis is normalized according to as

Z
′`,n
N = 1√

N
Zexp′

(
`,
i2πn
N

)
, `, n = 0 . . . N − 1, (7.16)

where Zexp′ is the normalized basis according to (7.10); thus complying with (7.5).
Assuming an N -point discrete signal s[n], n = 0 . . . N−1, DZT spectrum of the signal

can be written as
SZ [`] =

〈
Z`,n
N , s[n]

〉
, `, n = 0 . . . N − 1, (7.17)
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and assuming the normalization applied as

S ′Z [`] =
〈
Z
′`,n
N , s[n]

〉
, `, n = 0 . . . N − 1. (7.18)

7.2.1 Evaluation of Coefficients

DZT spectrum is defined as a set of coefficients given by the scalar product of Zolotarev
basis with analyzed signal (7.17). This approach is in direct analogy with the DFT.
However, the DZT spectrum direct coefficient evaluation was not yet archived.

Initial efforts as part of this work to generate the spectral coefficients of DZT, DZT
spectrum, according to (7.17) were unsuccessful and rather discouraging. The result of the
scalar product (7.17) increases rapidly into astronomical values, while the degree ` is being
incremented and k′ is constant. The result is virtually the same no matter the information
carried by an analyzed signal. The heart of this problem lies in the energy of the Zexp.
Let’s say we want to compute the DZT spectrum of the length of N = 512. We choose
reasonable k′ = 0.01, which results in E {Zexp(` = 12) = X} giving us the selectivity of
X; however, while ` rises to 512, E {Zexp(` = 12) >> X}. The enormous energy of Zexp
at higher degrees results in very high DR. Such DR results in DZT spectrum with virtually
no information on an analyzed signal. A possible way to overcome the DR problem is to
normalize the basis, according to (7.10). The DZT spectrum can be computed according
to (7.18). But, the results are still not satisfying. The normalization suppresses the
stationary part of the signal still resulting in a DZT spectrum with no legibility either.

To evaluate the coefficients of analyzed signal projected on the transformation ba-
sis, DZT spectrum or DZT spectrum, knowledge of approximation of signal using the
Zolotarev series is desirable. A signal approximation would lead to coefficients evalua-
tion. Nonetheless, such an approximation is yet not known. The main reason is that the
Zolotarev polynomials are mathematically complex and not yet fully explored.

An alternative approach to evaluate the DZT spectrum, proposed in [41]. It resides
in minimizing the DZT spectrum. This approach led to the ADZT development. The
ADZT [35, 36], see Section 4, minimizes the DZT spectrum energy, working in the spectral
domain rather than the time domain. The algorithm is capable of zeroing the DZT
spectrum’s spectral lines of higher degrees where the energy of the basis exceeds reasonable
DR.

DZT spectrum minimization approach application in the time domain according to
the scalar product of analyzed signal and the normalized basis as (7.18) is possible by
selecting optimal modulus of elliptical functions k′ of the Zexp for each spectral index `

such as it minimizes the spectrum. Such experiments were performed and shown minor
improvement in the amount of signal information contained in DZT spectrum, compared
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to the direct result of the scalar product (7.18). Nevertheless, a set of selected moduli
of elliptical functions k′ does not appear to carry much of analyzed signal information.
It is rather dominated by the basis of non-stationary part energy similar to the previous
attempts. This method has not proven to be profitable either.

7.3 Proposed Novel Approach

This section introduces an alternative approach to spectral coefficient evaluation using
symmetrical ZPs, an alternative to the DZT. For the reason of lack of signal approximation
by the Zolotarev series, the approach is ad hoc.

The ad hoc approach is based on the following reasoning.

• Firstly, let define the assumption of that the method shall exhibit DFT spectrum
properties global properties. Such that a stationary signal result is similar to the
DFT spectrum of analyzed signal.

• Secondly, let the method reflect both the global and local spectral properties of the
analyzed signal. The global signal energy properties are related to the signal long-
term integral properties, interval within the signal can be considered stationary.
The local signal energy properties are related to the signal envelope. This reasoning
is also introduced in Section 7.1.

• Thirdly, the amount of the local analyzed signal property, so-called local selectivity
K, is given by the scalar product of analyzed signal and a selective basis function
closely related to the symmetrical ZPs.

• Fourthly, the local selectivity is imposed on the global properties by multiplication
by it. Thus, assuming the global analyzed signal spectral properties are represented
in the DFT spectrum, then the DFT spectrum is multiplied by the local selectivity
value, which is the result of the scalar product.

Now, let illustrate the principle on a example. Assume an analyzed triangular signal with
a different offset from the center of the analyzed window. The signal with energy centroid
in the center is depicted in Figure 7.2a, with right of the center in Figure 7.2c, and with
left of the center in Figure 7.2e. An illustration of the selective basis waveform is depicted
as a dashed line in the figure. Note that for all analyzed signal shifts the resulting DFT
spectrum is equal in its absolute value. Figure 7.2b, 7.2d, and 7.2f depict DFT spectrums
for respective analyzed signal shifts; the blue lines denote the DFT spectrum amplitudes.

Consider that the DFT spectrum amplitude values are multiplied by the scalar product
of the analyzed signal and the selective basis, the local selectivity K. In the first case,
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where the energy centroid of the analyzed signal is at the center, the resulting spectrum
is equal to the DFT spectrum. In the second case, where the energy centroid of the
analyzed signal is right of the center, the resulting spectrum is reduced in amplitude by
1/K, see the red lines in the Figure 7.2d. Similarly, in the third case, see the red lines
in Figure 7.2f. The local selectivity K is equal for both cases since the selective basis is
even symmetric around the center. The result in the second and third cases reflects that
the local analyzed signal spectral properties are not aligned with the selective basis. Now
assume that the resulting spectrum is composed similarly to the short-time DFT, using
the windowing process. The output will exhibit additional resolution in time compared
to the STDFT. The result is actually similar to the STADZT.



CHAPTER 7. SPECTRAL ANALYSIS USING ZOLOTAREV POLYNOMIALS 75

-1

0

1

2

3

4

5

6

0 10 20 30 40 50 60
n

(a) Signal w1; energy at the win-
dow center depicted as samples; selec-
tive basis waveform is depicted by the
dashed line.
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(b) Left half of the DFT spectrum of
w1: |DFT {w1} |.
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(c) Signal w2; shifted to the right
of center depicted as samples; selec-
tive basis waveform is depicted by the
dashed line.
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(d) Left half of the DFT spectrum of
w2; red samples are the spectrum am-
plitudes reduced by the factor of 1/K.
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(e) Signal w3; shifted to the left of cen-
ter depicted as samples; selective ba-
sis waveform is depicted by the dashed
line.
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(f) Left half of the DFT spectrum of
w3; red samples are the spectrum am-
plitudes reduced by the factor of 1/K.

Figure 7.2: An illustration of proposed ad hoc non-stationary DFT based method prin-
ciple; an example triangular signal with different signal shifts is depicted in a),c), and
e). The absolute value of the DFT spectrum for each signal shift is depicted in b), d),
and f), respectively, by the blue samples; the resulting spectrum with signal local spectral
properties imposed is depicted by the red samples.
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7.3.1 Selective Basis

The selective basis of the proposed method is composed of a non-stationary part of the
Zolotarev exponential Zexp (7.3), see Section 7.2. The Zexp can be decomposed into
stationary and non-stationary parts. This principle was introduced in [41]. It is re-
lated to the fundamental property of the Zexp; Zexp is a generalization of the complex
trigonometric exponential, and it is additionally parametrized by the modulus of elliptical
functions k′. When the k′ = 0 the Zexp degrades to the trigonometric exponential, as
shown for Zolotarev cosine and sine in Section 6.2. The decomposition to the stationary
and non-stationary for Zcos is depicted in Figure 7.3d.
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Figure 7.3: Illustration of Zcos decomposition into stationary and non-stationary pars;
Zcos(m, k′, φ); m = 6, k′ = 0.2.

However, the decomposition described in [41] is not entirely correct. The article re-
gards the stationary part as the mth coefficient of the Zexp spectrum. The non-stationary
part is composed from all coefficients of with indexes ` ⊂ {0, ...,m− 1}, see Figure 7.3d.
In this case, the non-stationary part waveform energy is not limited at the edge of the win-
dow, see Figure 7.3c. This work rather defines the decomposition to of the non-stationary
part as

N {Zexp(m, k′, iφ)} = Zexp(m, k′, iφ)− Zexp(m, k′, iφ)|k′=0,

= Zexp(m, k′, iφ)− exp(m, iφ).
(7.19)
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The stationary part holds

S {Zexp(m, k′, iφ)} = Zexp(m, k′, iφ)|k′=0,

= exp(m, iφ).
(7.20)

The difference between approach in [41] and the proposed one is shown in Fig. 7.4.
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Figure 7.4: Non-stationary part of Zexp, denoted as NS in this figure legend, the non-
stationary part waveform is depicted separately for the real and imaginary part of the
Zexp, where the blue line denotes the proposed approach and the red line denotes the
approach in [41].

Thus the selective basis denoted as ∆(m, k′) for the proposed method is composed of
the Zexp non-stationary part according (7.19) as

∆(m, k′) = N {Zexp(m, k′, iφ)} , (7.21)

m is degree of the Zexp and k′ is modulus of elliptical functions.

7.3.2 Definition of the Method

As outlined previously the principle of the method result evaluation is the DFT spectrum
of analyzed signal multiplication of by the local selectivity K. The local selectivity K is
a scalar product of the selective basis ∆(m, k′) (7.21), in principle. However, the fact that
the energy of symmetrical ZPs, which is mostly composed of the non-stationary part, has
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large dynamic range has to be addressed. The high dynamic range is mitigated by the
introduced Zexp normalization (7.10). Additionally, the analyzed signal window energy
has to be normalized as well. Both normalization lead computation of the local selectivity
K as a correlation coefficient between the analyzed signal window and the selective basis
∆ as

K(`, k′) = 〈 ∆(`, k′), s(n) 〉
E {∆(`, k′)}E {s(n)} , (7.22)

where ∆(`, k′) is the selective basis (7.21), s(n) is the analyzed signal window and operator
E {.} is signal energy operator. The result is then equal to the multiplication of the
analyzed signal window DFT spectrum by the K(`, k′) as

|S ′′Z(`)| = |DFT{s(n)}(`)| K(`, k′), ` ⊂ {0, ..., N − 1} (7.23)

The spectrum is computed separately for the real and imaginary parts. This is possible
for analysis of a real signal. A short proof follows. The L1-norm and L2-norm are defined
by scalar product, see [77], as

x ⊂ Cn,

||x|| =
√√√√n−1∑

j=0
|xj|2 =

√
〈x,x〉 , 〈x,x〉 ≥ 0, (7.24)

||x||2 = 〈x,x〉 ,

where product polarization identity defines scalar product as

x,y ⊂ Cn,

〈x,y〉 = 1
4
(
||x + y||2 − ||x− y||2 + i||x + iy||2 − i||x− iy||2

)
, (7.25)

〈x,y〉 =
n−1∑
j=0

xj yj

 ,
||x|| =

√
〈x,x〉 , 〈x,x〉 ≥ 0.

The scalar product can be performed separately for the real and imaginary parts. Let’s
denote x = ∆(`, k′) ⊂ C and y = s[n] ⊂ R, and use as arguments of polarization identity
(7.25), while using (7.24). The result is confirms that consistent with the the separate
evaluation of (7.23) for the real and imaginary parts if the analyzed signal is real. This
separation holds for the real analyzed signal only.
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7.3.3 Results

Discrete Zolotarev transform based methods are a generalization of discrete Fourier trans-
form. Thus it is sensible to compare results with STDFT and its adaptive time-frequency
modifications. However, a comparison of the ADZT results with STDFT based methods
was already done comprehensively in Václav Turoň’s dissertation thesis [36]. Therefore,
it would be redundant as part of this work. A reader is kindly asked to refer to the [36].
The proposed method is compared only with STADZT and STDFT.

The proposed method does not perform any optimization of the selective basis; no
optimal modulus of elliptical function k′ is being found. Instead, the k′ is a parameter
of the method. The parameter k′ is related to frequency bandwidth where the method
provides improved time-resolution compared with the STDFT. Lower the value of the k′

higher the frequency band center is. This feature is similar to, so-called, ”zoom” technique,
where a desired frequency band is selected by a filer bank and consequentially zoomed in.

Choosing an k′ automatically for each frequency index is possible. A set of correlations
of analyzed signal with a set of the selective basis of tested k′, reveals a single k′ value
where a maximum value of the correlation exhibits. However, by choosing such k′ the
method’s time selectivity feature is degraded. This approach requires further effort and
will be studied in the future.

The examples of the method spectrum in comparison with the STDFT and STADZT
are in Figure 7.5, Figure 7.6, and Figure 7.7, for different values of k′ = 0.150, 0.075, and
0.097, respectively. The first illustrative result sets the frequency band focus at lower
frequencies, where the base of the Dirac impulse frequency can be observed; the time res-
olution is comparable with the STADZT. The second illustrative result sets the frequency
band focus at lower middle frequencies, where the base of the first mixture of harmonic
components can be observed. Note that the spectrum of the harmonic components is
intermittent similarly to the STADZT spectrum. The Dirac impulse spectrum is also ob-
servable with the time resolution is comparable with the STADZT. The Gauss pulse is also
noticeable although the energy in its spectrum is low; that is due to the frequency-focused
band center being slight of the Gauss pulse frequencies. The third illustrative result sets
the frequency band focus at higher middle frequencies, where the base of the first mix-
ture of harmonic components can be observed. Only the higher harmonic component
of the second mixture can be observed due to frequency focus. Note that the spectrum
of the harmonic components is intermittent similarly to the STADZT spectrum. The
Dirac impulse spectrum is also observable with the time resolution is comparable with
the STADZT. Figure 7.8 shows an illustrative example of an ECG signal analysis using the
proposed method in comparison with the STADZT. Both methods capture spectrum of
the QRS complex pulse distinctively in time. The P and T pulses are better visible in the
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proposed method’s spectrum compared with the STADZT spectrum. The DZT spectrum
property of intermittent spectral information in time is again noticeable in the spectrum
of both methods. The STDFT spectrum provides no time selectivity whatsoever for the
selected frequency resolution.

The fourth subplot shows the result of (7.23). Particularly pictures shows results for
synthetic and ENG signal for different chosen k′.

Figure 7.5: Comparison of the proposed method spectrum for synthetic signal composed
of the different consecutive synthetic signals; addition of two harmonic components with
different frequencies, a Dirac pulse, a single harmonic component, and the Gauss pulse.
The signal waveform a), the STDFT spectrum b) the STADZT spectrum c), and the
proposed method spectrum for k′ = 0.150 d).

7.4 Comparison of the Novel Approach with ADZT

• The spectrum of both the proposed method and the STADZT are intermittent for
stationary harmonic components. Thus this proves that the property is indeed the
DZT, and not a property ADZT algorithm.

• The proposed method has only one parameter, the modulus of elliptical function k′,
so the method has one less degree of freedom compared to the ADZT.

• The proposed method, unlike the ADZT, ZOOMs in the selected frequency band,
which depends on the value of the k′ parameter.
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Figure 7.6: Comparison of the proposed method spectrum for synthetic signal composed
of the different consecutive synthetic signals; addition of two harmonic components with
different frequencies, a Dirac pulse, a single harmonic component, and the Gauss pulse.
The signal waveform a), the STDFT spectrum b) the STADZT spectrum c), and the
proposed method spectrum for k′ = 0.075 d).

• The proposed method does not yet allow the setting of k′ automatically based on
the analyzed signal. Further effort should be dedicated to exploring this feature.
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Figure 7.7: Comparison of the proposed method spectrum for synthetic signal composed
of the different consecutive synthetic signals; addition of two harmonic components with
different frequencies, a Dirac pulse, a single harmonic component, and the Gauss pulse.
The signal waveform a), the STDFT spectrum b) the STADZT spectrum c), and the
proposed method spectrum for k′ = 0.037 d).

Figure 7.8: Comparison of the proposed method spectrum for a model ECG signal. The
signal waveform a), the STDFT spectrum b) the STADZT spectrum c), and the proposed
method spectrum for k′ = 0.150 d).



Chapter 8

Conclusion

This thesis was focused on selected problems connected with the application of ZP to
spectral analysis.

• Firstly, the implementation of DZT spectrum evaluation using the approximated
symmetrical Zolotarev polynomials, known as the ADZT, was in the focus. The
algorithm was studied with respect to its computation demands. The design of a
more efficient algorithm software implementation, together with an embedded hard-
ware implementation targeting the FPGA, was suggested and implemented. The
embedded implementation enables ADZT computation in real-time. The findings
were published in [A2].

• Secondly, the ADZT was studied with the aim to use it for transient signals analysis.
A modification of the ADZT tailored for damped exponential signals analysis was
described. The modification outperforms both the original ADZT and DFT, using
various weighting windows, in the detection of transient signals, damped exponential
signals in particular. This study was motivated by a possibility to use the ADZT
for analysis of faulty rotary machinery, bearings in particular. The findings were
published in [A3].

• Thirdly, the properties of symmetrical Zolotarev polynomials including orthogonal-
ity properties were described. Numerical properties of algorithms generating even
Zolotarev polynomials were explored and described. It was shown that the algorithm
generating the polynomials as either a waveform in the time domain or coefficients in
the spectral domain is very precise and stable. Additionally, this study revealed that
the method of computing Zolotarev polynomials by backward recursion followed by
iDCT has much worse numerical behavior than the one using forward recursion.
The findings were published in [A1].
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• The novel spectral analysis method employing symmetrical Zolotarev polynomials
was proposed. In contrast with the ADZT, which uses approximated polynomials
and is implemented in the frequency domain, the new DZT transform is implemented
in the time domain. The proposed method has only a single tuning parameter, while
the ADZT performance is determined by two parameters. This property is given by
the fact that the proposed method related to the DZT uses symmetrical Zolotarev
polynomials, not the approximated ones. The novel transform has the feature that
generates the intermittent short-time spectrum of stationary signals similar to the
ADZT. This fact allows concluding that this feature is in fact the inherent property
of symmetrical Zolotarev polynomials when used for spectral analysis. Even though,
new results were achieved there is a number of unsolved questions regarding the use
of symmetrical Zolotarev polynomials for spectral analysis. These questions were
stated in the text of this thesis. The findings were partially published in the technical
report [A6].
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Appendix A

9.1 ADZT embedded implementation on FPGA

Today’s embedded systems are composed of both SW (software) and HW (hardware)
components, each one has its pros and cons:

• Fully SW product solution, for instance [78], [79], is easy to develop as well as
debug. The risk of a costly bug in the final products is low. Later modifications
can be applied easily; software is very flexible. On the other hand, the software
runtime is often unnecessarily long and requires considerable resources. Also, power
consumption is often high.

• Fully HW solution is dedicated to perform specific task effectively with respect to
time, area resources, and power consumption (e.g., [80], [81], [82]). However, to
implement and verify such a solution is time-consuming. There is a considerable
risk of a bug in the final product, and even a minor modification can result in a time
consuming architecture change. A hardware solution is rather optimized but not
very flexible.

SW parts of the system are suited to implement decision-like tasks where data throughput
is not an issue often in higher levels of system hierarchy (e.g., control communication
protocol, control blocks governing data path blocks). On the other hand, HW system parts
are best in tasks where many operations with many data are required as fast as possible;
data throughput is a key issue (e.g., data path blocks, MAC blocks). We used co-design
methods [83, 84] to achieve a trade-off between the advantages and disadvantages of both
SW and HW solutions. Our design goals were speed, simplicity, and the possibility of
future minor changes.

The first step in the system level design was to draw the boundary between HW and
SW part of the system. We started the system design as fully SW based on the functional
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Figure 9.1: System top level architecture. Dashed lines depicts distinct clock domains.

algorithm model using a general-purpose processor; we exploited SW versatility and were
able to debug the system quickly and effectively. Then we confirmed the computation
bottlenecks, which were revealed by the algorithm asymptotic complexity analysis in Sec-
tion 4.2. The first algorithm step, the FFT algorithm, we implemented as HW solution.
The FFT algorithm is a well covered topic, see [85, 79, 81]. The second algorithm step
is the most time complex one. The step is comprised of addition, multiplication, and
minimum search in (4.2). Thus the step can be easily implemented by HW: addition
and multiplication are common operations, and minimum search requires only one deci-
sion. The third algorithm step has linear time complexity; this is not an issue from the
computational complexity standpoint. Furthermore, the step comprises of several deci-
sions. Hence the third step is implemented by SW. Figure 4.1 depicts the algorithm steps
implemented by HW with a double line border and by SW with a single line border.

The architecture of the system is outlined in Fig. 9.1. It is composed of Plasma
processor [48], external address decoder, FFT coprocessor, Non-Stationary (N-S) part
coprocessor, and interface. The interface unit stands for a bridge between the bus and
the external world. The address decoder selects an external unit and connects its buses to
the processor as well as handles simple Direct Memory Access (DMA). We favored 32 bit
RISC processor Plasma [48] with MIPS ITM instruction set [86]. The processor has free
licence terms, free C language compiler, and it is written in VHDL. The Plasma processor
has 8 kB internal memory for programs and data. The SW program, which implements
the algorithm step 3 and schedules the execution of both coprocessors, size is ≈ 2.8 kB.
The data memory is mainly occupied with pre-computed values of K(m) for each m in
(4.7): utilizing 4 kB. Thus the processor’s internal memory size is sufficient for our needs.
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The system is separated into two clock domains. The N-S part coprocessor, part of
the FFT coprocessor, and the interface are clocked at 100 MHz. The Plasma processor
and the radix-2 butterflies within the FFT coprocessor are clocked at 50 MHz. The
address decoder serves as a bridge between the two clock domains. The main reason to
introduce two clock domains is to speed up the N-S part coprocessor; thus reducing the
step 2 runtime. The coprocessor accesses the FFT coprocessor memory via DMA during
the execution. This requires the address decoder and the FFT coprocessor to be in the
same clock domain as the N-S part coprocessor is. However, the butterflies would require
additional pipelining to reach the higher clocking frequency. This is not necessary since
the FFT computation speed up would not yield a significant runtime reduction of the
whole system. The solution is to keep the butterflies in the slower clock region. The
resynchronization between the domains is relatively simple. The faster clock domain has
exactly twice the slower clock domain frequency. The two clock signals have aligned rising
edges. Sufficient adaptation is to lengthen control signals leading from the faster to the
slower domain to two clock cycles.

All of the system units have been written in VHDL language.

FFT Coprocessor

The hardware design methods to implement an FFT coprocessor have been described pre-
viously, see [85, 79, 81]. The FFT coprocessor is composed of a pair of radix-2 butterflies,
a pair of double port RAM for each butterfly, and a dedicated address generator. Twiddle
factors are stored in a pair of 2 048 × 32 bit ROM; its size is 16 kB. Each butterfly uses
32 × 32 bit wide complex multiplier with two-stage pipelining. The unit holds complex
input samples and output DFT complex spectrum in the memory pair. Real Imaginary
Alternate (RIA) format [87] is used. The memory pair has total depth of 2×2 048 = 4 096
depth (2 represents real and imag. part, NDFT = 2 048); the memory size is 16 kB. The
memory is accessible through the system bus, and it is used as data memory for the whole
system. The unit total memory requirement is 32 kB. The unit computes one-shot DFT
spectrum of length NDFT = 2 048 in ≈ 5 700 clock cycles of the slower clock domain. The
FFT coprocessor has been designed as part of master’s thesis [88].

Non-stationary Part Coprocessor

The N-S part coprocessor top-level schema is in Fig. 9.2. The unit realizes computation
of the N-S part according to (4.6) and searches for an optimum according to (4.2) for
the current `th spectral line. The actual computation is implemented in the N-S core
block. The address generator generates addresses of DFT coefficients stored in the FFT
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Figure 9.2: Non-stationary part coprocessor top level architecture; dashed lines denote
control signals, wide lines denote buses. All buses are 32 bit wide. Clock and global
asynchronous reset signals are omitted in the schema.

coprocessor as

S addr`(m′) = (`−m′)× 2 + is imag, m′ = {0, 1, . . . , N − 1} . (9.1)

Since the algorithm works separately for real and imaginary parts, the address is multiplied
by 2 in order to select real or imaginary parts only (according to used RIA format). The
real or imaginary part is computed, while the variable is imag is set to 0 or 1, respectively.
The address is routed through the system bus to the FFT coprocessor, which output
supplies the N-S core unit with stationary part values. The unit is mounted to the system
bus as its master via DMA during the unit execution. Input current spectral `th line
and variable is imag are stored in the register bank. The register bank also holds results
supplied by the N-S core block, optimal bandwidth, and N-S part. The controller block
controls access to the register bank and the system bus as well as schedules execution of
the other blocks.

The principal schema of the N-S core block architecture is in Fig. 9.3. The MEM blocks
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Algorithm step System unit Runtime (clock cycles)
1 FFT coproc. ≈ 5.7 k
2 N-S coproc. ≈ 539 k
3 Plasma proc. ≈ 318 k

2 & 3 simultaneously N-S + Plasma + DMA ≈ 570 k

Table 9.1: Algorithm cumulative runtime (the algorithm steps 2 and 3 are executed N
times for arbitrary `) for segment length NDFT = 2 048; clock cycles values are given

with respect to the 50 MHz clock domain.

stand for a simple synchronous memory composed of a multiplexor and a synchronous
register. SIGN MUX 1, adder, and ALT SUM MEM implement (4.6); both SIGN MUX
and ALT SUM MEM form a MAC unit with multiplication coefficient of (−1)m′ . The
weighs 1

m′
in (4.2) are stored in ROM (32 bit wide, N depth: the 4 kB size) and are

multiplied with N-S part by 32 × 32 bit multiplier. The result of the multiplication is
rounded to 32 bit wide signal. SIGN MUX 2 stands for sgn(S(`)) in (4.2). If a provisional
minimal value is found, MIN value is updated; the current m′(`) and N(`,m′) are stored
in the register bank. Since the unit core works in five pipeline stages, it has its own
Finite State Machine (FSM) controller. The unit runtime for N = 1 024 for arbitrary `th
spectral line is ≈ 1 038 clock cycles.

HW&SW Scheduling

The SW and the HW parts of the system can operate simultaneously using the system
DMA unit. This feature can accelerate the algorithm runtime. The runtime for each of
algorithm step pertaining to a particular system unit is stated in Tab. 9.1. The runtime
of the FFT coprocessor (step 1) is negligible compared with the other ones. Runtime
of the N-S coprocessor and the algorithm SW part in the processor (steps 2 and 3) are
comparable. Moreover, both algorithm steps are executed N -times for an arbitrary `.
Therefore, it is suitable to exploit HW&SW parallelism in steps 2 and 3. The scheduling
scheme is to execute the N-S coprocessor to pre-compute l+1th spectral line during the
SW part computes lth one. Using this scheduling the total runtime depends virtually on
HW N-S coprocessor runtime.
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Chapter 10

Appendix B

10.1 Orthogonality of Symmetrical Zolotarev Poly-
nomials

This appendix is a reduced version of prof. Miroslav Vlček’s research report which has
not been published. The Chebysev polynomial of the first kind is orthogonal [89]

2
∫ 1

0
dx

1√
1− x2

T2p(x)T2q(x) = δpq
π

2 . (10.1)

Let assume substitution

x =
√
w2 − k′ 2
1− k′ 2 and

√
1− x2 =

√
1− w2

1− k′ 2 , (10.2)

The variable x ∈< 0, 1 > provides w ∈< k′, 1 >, and our orthogonal relation (10.1) reads

2
∫ 1

k′

w dw√
(1− w2) (w2 − k′ 2)

Tp

√w2 − k′ 2
1− k′ 2

 Tq

√w2 − k′ 2
1− k′ 2

 = δpq
π

2 (10.3)

confirming that symmetrical Zolotarev polynomials are orthogonal on disjoint intervals
w ⊂< −1,−k′ > ∪ < k′, 1 >.

91



Bibliography

[1] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Processing
(2nd Edition) (Prentice-Hall Signal Processing Series). Prentice Hall Inc., 1999.
isbn: 0137549202.

[2] W. L. Briggs and V. E. Henson. The DFT: An Owner’s Manual for the Discrete
Fourier Transform. Society for Industrial Mathematics, Jan. 1987. isbn: 0-89871-
342-0.

[3] S. L. Murple. Digital Spectral Analysis: With Applications. Prentice Hall Inc., Jan.
1987. isbn: 9780132141499.

[4] S. C. Pei, M. H. Yeh, and C. C. Tseng. “Discrete fractional Fourier transform based
on orthogonal projections”. In: IEEE Transactions on Signal Processing 47.5 (1999),
pp. 1335–1348. doi: 10.1109/78.757221.

[5] V. Narayanan and K. Prabhu. “The fractional Fourier transform: Theory, implemen-
tation and error analysis”. In: Microprocessors and Microsystems 27 (Nov. 2003),
pp. 511–521. doi: 10.1016/S0141-9331(03)00113-3.

[6] C. Candan, M. A. Kutay, and H. M. Ozaktas. “The discrete fractional Fourier
transform”. In: IEEE Transactions on Signal Processing 48.5 (2000), pp. 1329–
1337. doi: 10.1109/78.839980.

[7] A. Lukin and J. Todd. “Adaptive Time-Frequency Resolution for Analysis and Pro-
cessing of Audio”. In: 4 (Jan. 2012).

[8] D. Rudoy, P. Basu, T. F. Quatieri, et al. “Adaptive short-time analysis-synthesis for
speech enhancement”. In: 2008 IEEE International Conference on Acoustics, Speech
and Signal Processing. 2008, pp. 4905–4908. doi: 10.1109/ICASSP.2008.4518757.

[9] V. Katkovnik and L. Stankovic. “Instantaneous frequency estimation using the
Wigner distribution with varying and data-driven window length”. In: IEEE Trans-
actions on Signal Processing 46.9 (1998), pp. 2315–2325. doi: 10.1109/78.709514.

[10] P. Grünwald. “A Tutorial Introduction to the Minimum Description Length Prin-
ciple”. In: CoRR math.ST/0406077 (June 2004).

[11] A. Nazin and V. Katkovnik. “Minimax lower bound for time-varying frequency
estimation of harmonic signal”. In: IEEE Transactions on Signal Processing 46.12
(1998), pp. 3235–3245. doi: 10.1109/78.735299.

[12] V. Katkovnik and S. L. “Periodogram with varying and data-driven window length”.
In: Signal Processing 67.3 (1998), pp. 345–358. issn: 0165-1684. doi: https://doi.
org/10.1016/S0165-1684(98)00049-8. url: http://www.sciencedirect.com/
science/article/pii/S0165168498000498.

92

https://doi.org/10.1109/78.757221
https://doi.org/10.1016/S0141-9331(03)00113-3
https://doi.org/10.1109/78.839980
https://doi.org/10.1109/ICASSP.2008.4518757
https://doi.org/10.1109/78.709514
https://doi.org/10.1109/78.735299
https://doi.org/https://doi.org/10.1016/S0165-1684(98)00049-8
https://doi.org/https://doi.org/10.1016/S0165-1684(98)00049-8
http://www.sciencedirect.com/science/article/pii/S0165168498000498
http://www.sciencedirect.com/science/article/pii/S0165168498000498


BIBLIOGRAPHY 93

[13] L. Debnath. “Recent developments in the Wigner-Ville distribution and time-frequency
signal analysis”. In: Proceedings of the Indian National Science Academy. Part A.
Physical Sciences 1 (Jan. 2002). doi: 10.1007/978-0-8176-8418-1_5.

[14] B. Boashash. Time Frequency Signal Analysis and Processing, A Comprehensive
Reference. Amsterdam: Elsevier Science, 2003. isbn: 978-0-0805-4305-5.

[15] P. Chi and C. Russell. “Use of the Wigner-Ville distribution in interpreting and
identifying ULF waves in triaxial magnetic records”. In: Journal of Geophysical
Research 113 (Jan. 2008). doi: 10.1029/2007JA012469.

[16] M. Szmajda, K. Górecki, and J. Mroczka. “Gabor Transform, Gabor-Wigner Trans-
form and SPWVD as a time-frequency analysis of power quality”. In: Proceedings of
14th International Conference on Harmonics and Quality of Power - ICHQP 2010.
2010, pp. 1–8. doi: 10.1109/ICHQP.2010.5625371.

[17] A. Papandreou and G. F. Boudreaux-Bertels. “Generalization of the Choi-Williams
Distribution and the Butterworth Distribution for Time-Frequency Analysis”. In:
IEEE Transactions on Signal Processing 41.1 (1993), pp. 463–. doi: 10.1109/TSP.
1993.193179.

[18] D. Rudoy, P. Basu, and P. J. Wolfe. “Superposition Frames for Adaptive Time-
Frequency Analysis and Fast Reconstruction”. In: IEEE Transactions on Signal
Processing 58.5 (2010), pp. 2581–2596. doi: 10.1109/TSP.2010.2041604.

[19] R. Merry. Wavelet theory and applications: a literature study. DCT rapporten. DCT
2005.053. Technische Universiteit Eindhoven, 2005.

[20] N. Huang, Z. Shen, S. Long, et al. “The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis”. In: Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical and En-
gineering Sciences 454 (Mar. 1998), pp. 903–995. doi: 10.1098/rspa.1998.0193.

[21] N. Huang, Z. Shen, and S. Long. “A new view of non-linear water waves: The
Hilbert Spectrum”. In: Annual Review of Fluid Mechanics 31 (Nov. 2003). doi:
10.1146/annurev.fluid.31.1.417.

[22] N. E. Huang and Z. Shen. Hilbert-Huang Transform and Its Applications. Singapore:
Scientific Publishing Co., 2005. isbn: 981-256-376-8.

[23] N. Huang, M.-L. Wu, S. Long, et al. “A confidence limit for the empirical mode
decomposition and Hilbert spectral analysis”. In: Proceedings of The Royal Society
A: Mathematical, Physical and Engineering Sciences 459 (Sept. 2003), pp. 2317–
2345. doi: 10.1098/rspa.2003.1123.

[24] P. Stoica and R. L. Moses. Introduction to Spectral Analysis. Prentice Hall, 1997.
isbn: 978-0-132-58419-7.

[25] B. G. Quinn and E. J. Hannan. The Estimation and Tracking of Frequency. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2001. doi: 10.1017/CBO9780511609602.

[26] S. Haykin. Nonlinear Methods of Spectral Analysis. Springer-Verlag, 1979. isbn:
978-3-540-12386-6.

[27] C. L. Nikias and A. P. Petropulu. Nonlinear Methods of Spectral Analysis. Prentice
Hall Inc., 1993. isbn: 978-0-136-78210-0.

https://doi.org/10.1007/978-0-8176-8418-1_5
https://doi.org/10.1029/2007JA012469
https://doi.org/10.1109/ICHQP.2010.5625371
https://doi.org/10.1109/TSP.1993.193179
https://doi.org/10.1109/TSP.1993.193179
https://doi.org/10.1109/TSP.2010.2041604
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1146/annurev.fluid.31.1.417
https://doi.org/10.1098/rspa.2003.1123
https://doi.org/10.1017/CBO9780511609602


BIBLIOGRAPHY 94
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[A1] KUBÁK, J., P. SOVKA and M. VLČEK. Evaluation of Computing Symmetrical
Zolotarev Polynomials of the First Kind. Radioengineering. 2017, 26(3), 903-913.
ISSN 1210-2512. DOI 10.13164/re.2017.0903.
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