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Abstract—In surgical practice, small metallic instru-
ments are frequently used to perform various tasks inside
the human body. We address the problem of their accurate
localization in the tissue. Recent experiments using medi-
cal ultrasound have shown that this modality is suitable for
real-time visualization of anatomical structures as well as
the position of surgical instruments. We propose an image-
processing algorithm that permits automatic estimation of
the position of a line-segment-shaped object. This method
was applied to the localization of a thin metallic electrode
in biological tissue. We show that the electrode axis can
be found through maximizing the Parallel Integral Projec-
tion transform that is a form of the Radon transform. To
accelerate this step, hierarchical mesh-grid algorithm is im-
plemented. Once the axis position is known, localization of
the electrode tip is performed. The method was tested on
simulated images, on ultrasound images of a tissue mimick-
ing phantom containing a metallic electrode, and on real
ultrasound images from breast biopsy. The results indicate
that the algorithm is robust with respect to variations in
electrode position and speckle noise. Localization accuracy
is of the order of hundreds of micrometers and is compara-
ble to the ultrasound system axial resolution.

I. Introduction

Many medical surgical procedures consist of introduc-
ing a small surgical instrument, such as a needle or

electrode, into biological tissue. In biopsy, tissue samples
are taken from a particular region of the body by means
of a thin needle [1]. In breast cancer therapy, a radioactive
substance is injected near the tumor [2]. In the field of neu-
rological research, the electrical activity of a specific group
of neurons is recorded by a thin electrode needle [3]. For
such procedures, it is often useful to know the instrument
position during the intervention.
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for Machine Perception, Czech Technical University in Prague, Czech
Republic (e-mail: uhercik@cmp.felk.cvut.cz).
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A. Existing Localization Techniques

Horsley and Clarke [4], in 1908, introduced the stereo-
tactic frame for instrument localization on small animals.
They used a frame fixed with respect to external anatom-
ical landmarks to place an electrode at a specific point
in the animal’s brain. However, the position of intracra-
nial point often cannot be deduced from external land-
marks with sufficient accuracy. To surmount this problem,
stereotaxy is currently combined with magnetic resonance
imaging (MRI) or computed tomography (CT) images.
This technique permits reaching localization accuracy of
the order of a tenth of a millimeter [5]. To avoid the lim-
itations and patient discomfort associated with a stereo-
tactic frame, frameless techniques were proposed. One of
them is the spatial localization using a radio-frequency sig-
nal [6]. Three fixed orthogonal coils generate electromag-
netic waves that are picked up by small coils attached to
the tracked surgical instrument. Its position is estimated
from the phase shift of received signals. Optical tracking
with two calibrated cameras is also used [7]. The three-
dimensional (3-D) position of a marker on the tracked tool
is determined from its projection in the images. The main
difficulty is that the marker point must be visible in both
cameras. Recently, tool localization using medical imag-
ing modalities such as MRI, CT, and ultrasound was pro-
posed [8]. They allow the physicians to view anatomical
information of the human body as well as surgical instru-
ments during the intervention. In terms of applicability
to the problem of metallic instrument localization, the ul-
trasound imaging modality offers a number of advantages:
short acquisition time permits real-time imaging, no ion-
izing radiation is involved, and compatibility with metal-
lic objects. The resolution of modern systems is approx-
imately 1 mm. The purchase and operational cost is low
compared to other medical imaging modalities.

B. Problem Description

The use of ultrasound for image-guidance procedures
has become a clinical routine [8]. Glimcher [9] investi-
gated the observability of a thin electrode inside a pri-
mate cortex in 2-D ultrasound images. From the experi-
ments, he concludes that the ultrasound modality permits
visualization of the anatomical structure together with a
thin needle of diameter comparable to the ultrasound ax-
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ial resolution. However, observing a 3-D object using con-
ventional B-mode images presents inherent limitations. In
general, only a cross section is observable, unless the elec-
trode axis is aligned with the scan plane. This is difficult to
achieve without a special mechanical setup. To overcome
this problem, a 3-D ultrasound scanner has been used in-
stead [10], [17].

The task consists of automatic identification of a sur-
gical instrument in the 3-D ultrasound image. The infor-
mation about its position permits extraction from the ac-
quired 3-D image of a planar section in which it is easier
for a human to observe the tool. The position of the tool
is determined in a coordinate system related to the ultra-
sound probe.

The task of an automatic object localization in ul-
trasound data is difficult because of attenuation, speckle
noise, shadows, low contrast between the object and back-
ground, and signal dropouts. Large amounts of data re-
quire a fast algorithm to perform a real-time localization.

C. Previous Work

A variety of algorithms for object localization in ultra-
sound data have been proposed. The position of an axis
of an object such as an electrode can be determined in a
2-D image using the principal component analysis (PCA)
[11]. Initially, a variance image is computed as the intensity
variance in a small neighborhood of each pixel of the origi-
nal image. Next, the variance image is thresholded, and the
PCA is applied to the covariance matrix of the coordinates
of the thresholded pixels. The electrode axis is determined
by the eigenvector corresponding to the largest eigenvalue.
The experiments with a breast biopsy needle of 2.1 mm in
diameter show that the intercept and the needle tip can
be determined by the algorithm with accuracy of 1 mm for
a depth of insertion greater than 15 mm. Novotny et al.
[12] enhanced this technique to 3-D images. Original im-
age is segmented by thresholding, and compact clusters of
voxels are identified. The cluster with the highest length to
width ratio is selected. The experiment with a rod of 2-mm
diameter was done. Tao et al. [13] introduced ultrasound
image segmentation based on model-fitting. Geometry of
the 3-D object to localize is described by a superquadric,
whose parameters are estimated by a RANSAC (random
sample consensus) estimator [14]. Barva et al. [15] using a
polynomial curve model reported accuracy 0.2 mm for an
electrode of diameter 0.5 mm. Another approach is based
on the observation that the electrode is more conspicuous
in a projected image, and that its projection is minimized
when the projection is performed along the electrode axis
[16]. In the first step, the original image is projected to
a plane. The direction of the electrode projection in the
plane together with the projection direction determines
a plane that contains the actual electrode. Adaptive 1-D
search is used to minimize the projection area of the elec-
trode. The reported accuracy is 0.4 mm. To minimize the
projected area of the electrode, Novotny et al. [18] uses
a modified Radon transform. They divided the volume to

smaller spherical regions and detected the axis locally us-
ing a fast method implemented on a graphics processing
unit (GPU). They demonstrated a real-time tracking of
tubular instruments of diameter 5 mm in a cardiac se-
quence with accuracy 0.2 mm.

II. Proposed Method

We introduce an algorithm that permits automatic es-
timation of the position of a thin electrode in a 3-D ultra-
sound image. It identifies the electrode axis and its tip. The
following assumptions about the electrode appearance in
the image are made: (i) the electrode appears as a cylindri-
cal object with a straight axis and a length much greater
than a diameter, and (ii) the intensity of electrode voxels
is much higher than the intensity of background voxels.
Based on these hypotheses, the localization of electrode
axis is done using a parallel projection. We formalize the
3-D projection into the form of a Parallel Integral Projec-
tion (PIP) transform and show that the electrode axis can
be found by maximizing the PIP transform of the origi-
nal image. The maximization is accelerated by means of
a hierarchical mesh-grid algorithm. In a second phase, the
electrode tip is found. This is accomplished by optimal
thresholding that exploits prior probability densities of ob-
ject and background voxel intensities.

The method presented here is designed for approx-
imately straight needles, which covers most situations
during intervention. For curved needles, other localiza-
tion methods are intended, such as the method based on
RANSAC and a polynomial curve model [15].

A. Axis Localization with Parallel Integral Projection
Transform

The PIP is a transform that maps an image function
I : R

3 → R representing volume data to a function
PI : R

4 → R describing its projections as a function of the
2-D displacement (u, v) and the projection direction deter-
mined by two angles (α, β) [Fig. 1(a)]. More formally, the
PIP transformation of I(x) is defined by an integral along
a line passing through the point Q = [u, v] with direction
w given by angles α, β:

PI(u, v, α, β) =
∫ ∞

−∞
I

(
R(α, β) · (u, v, τ)T

)
dτ,

(1)

where:

R(α, β) =

⎛
⎝cosβ sinα sinβ − cos α sinβ

0 cosα sinα
sinβ − sinα cosβ cosα cosβ

⎞
⎠ (2)

is the rotation matrix representing a rotation around the
x-axis by angle α, and around the y-axis by angle β. The
PIP transform is a form of the Radon transform used in
CT [19]. The same transform as PIP was called a modified
Radon transform in [18]. The Radon transform usually is
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Fig. 1. (a) The PIP transform—the integral of the image intensity
function I in (1) is calculated along a line given by the point Q =
[u, v] and a vector w. (b) Evaluation of the PIP transformation of a
3-D image. Electrode is represented by a cylinder M . In this par-
ticular configuration, PI is maximized as the line of integration is
identical with the electrode axis.

defined [20] as an integral of a 3-D function over paral-
lel planes. The PIP transform is an integral over parallel
lines. This transformation is sometimes also called an X-
ray transform.

The PIP transform can be used to identify the axis of
a thin electrode in a 3-D image as follows [Fig. 1(b)]: Let
I : R

3 → R be an image function such that the intensity
of an electrode M is strictly greater than the background
intensity:

∀x1 ∈ M, ∀x2 �∈ M : I(x1) > I(x2). (3)

Then, as the electrode diameter tends to zero, the location
of the PIP maximum:

(umax, vmax, αmax, βmax) = arg maxPI(u, v, α, β),
(4)

approaches the axis of M with a parametric equation:

a(t) = R(αmax, βmax) · (umax, vmax, t)T ; ∀t ∈ R.
(5)

1. Discretization of the PIP Transformation: We shall
maximize the PIP transformation of a 3-D image on a
discrete grid. The discretization steps ∆α, ∆β, ∆u, ∆v

must be sufficiently fine not to miss the electrode. We set
them such that:

∆α, ∆β ≤ 2 arctan
d

2‖xmax‖
, (6)

∆u, ∆c ≤ d, (7)

where d is the electrode diameter and xmax is the position
of the most distant voxel from the origin. The motivation
comes from the requirement that at least one integration
line passes through the electrode (Fig. 2).

The integral PI is evaluated numerically. The integra-
tion line is sampled with a sampling step corresponding to
the axial resolution of the ultrasound system. The integral
is found using the trapezoidal rule.

Fig. 2. (a) Discretization step of angles α, β. If two lines of integration
incline at angle ϕ for which (6) holds, then at least one of the lines
fully intersects the electrode. (b) Discretization step of variables u, v.
Assuming two parallel lines of integration, the displacement must be
less than the electrode diameter d, so that the electrode comprises
at least one line of integration.

2. Maximizing the PIP Transformation: We decompose
the maximization of PI(u, v, α, β) to an inner maximiza-
tion with respect to (u, v) and an outer maximization with
respect to (α, β).

Let us define a function:

A(α, β) = max
u,v

PI(u, v, α, β), (8)

that will be referred to as the angle function. An-
gles αmax, βmax maximizing A(α, β) also maximize
PI(u, v, α, β) for some umax, vmax,

∃umax, vmax :
(umax, vmax, αmax, βmax) = arg maxPI ⇔

⇔ (αmax, βmax) = arg max A.

To determine the value of A(α, β), we first find the cir-
cumscribed rectangle 〈u1, u2〉×〈v1, v2〉 of the parallel pro-
jection of the image boundary onto the plane σ by a normal
vector w = R(α, β) · (1, 0, 0)T (Fig. 3) as:

u1 = min
x∈Ω

(R−1(α, β) · x) · ex,

u2 = max
x∈Ω

(R−1(α, β) · x) · ex,

v1 = min
x∈Ω

(R−1(α, β) · x) · ey,

v2 = max
x∈Ω

(R−1(α, β) · x) · ey.

where Ω is a set of voxel coordinates and ex, ey are unit
vectors in the Cartesian coordinate system. The integral
in (1) is evaluated at a grid of points (u, v) uniformly dis-
tributed on the rectangle 〈u1, u2〉×〈v1, v2〉 with steps ∆u,
∆v satisfying (7). The value of A(α, β) is the maximum of
PI exhaustively evaluated on the grid with fixed α, β.

We shall now find values αmax, βmax that maximize the
angle function A(α, β):

(αmax, βmax) = arg max A(α, β). (9)

Two approaches to this maximization have been tested:
exhaustive search, and hierarchical mesh-grid search.
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Fig. 3. Evaluation of the angle function A(α, β). 3-D image boundary
is projected on the plane σ and a circumscribed rectangle comprising
the projection is determined. Sampling the rectangle with a uniform
grid of points (u, v), the value of A(α, β) is taken to be equal to
maxu,v PI (α, β, u, v) evaluated on this grid for fixed (α, β).

Fig. 4. PIP transformation of a 3-D image for a given angles (α, β).
You can see the peak in the middle representing the high response
of the electrode.

Other approaches, such as gradient descent algorithm, are
also possible [21]. We decided to use the hierarchical mesh-
grid method because it does not require an initial solution
and does not need derivates and to some extent can avoid
a local maximum.

a) Exhaustive search: Due to the periodicity of the PIP
transform in α, β, it suffices to maximize the angle function
in the interval 〈0◦, 180◦〉×〈0◦, 180◦〉. This grid is uniformly
sampled with discretization steps satisfying (6), (7), and
the angle function is evaluated at each grid point (Figs. 4
and 5).

b) Hierarchical mesh-grid search: The main drawback
of the exhaustive search is its computational complexity.
To alleviate it, we propose to use the hierarchical mesh-
grid search method [22]. On the first level, A(α, β) is evalu-
ated on a rectangular grid of points 〈0◦, 180◦〉×〈0◦, 180◦〉
that are uniformly sampled with steps ∆init

α , ∆init
β (Fig. 6).

The maximum location (α1
max, β1

max) is determined. On
the second level, the angle function is evaluated on a rect-
angular grid 〈α1

max − 45◦, α1
max + 45◦〉 × 〈β1

max − 45◦,

Fig. 5. Maximization of the angle function A(α, β). (a) Exhaustive
search with discretization steps evaluates A(α, β) at each grid point
of a square grid 〈0, 180◦〉 × 〈0, 180◦〉 uniformly sampled with dis-
cretization steps ∆α = ∆β = 1◦. (b) Five-level hierarchical mesh-
grid search with initial steps ∆1

α = ∆1
β = 16◦ and final discretization

steps ∆5
α = ∆5

β = 1◦. The size of a search region and discretization
steps ∆α, ∆β are decreased by a factor of 2 at each level. Black
rectangles in the figure delineate the region of search on each level.

Fig. 6. Principle of hierarchical mesh-grid algorithm applied to max-
imum search of the angle function A(α, β). On the first level, the
angle function A is evaluated on a grid of points and α1

max, β1
max is

selected. On the second level, the A is evaluated on a grid of points
with a smaller range and a smaller step, then α2

max, β2
max is selected,

etc.

β1
max + 45◦〉 uniformly sampled with steps ∆2

α = (∆1
α/2),

∆2
β = (∆1

β/2), where ∆1
α = ∆init

α , ∆1
β = ∆init

β . The
pair (α2

max, β2
max) that maximizes A(α, β) is established.

Generally, on the i-th level, the angle function is evalu-
ated on a grid 〈αi−1

max − (180◦/2i), αi−1
max + (180◦/2i)〉 ×

〈βi−1
max − (180◦/2i), βi−1

max + (180◦/2i)〉 with discretization
steps ∆i

α = (∆1
α/2i−1), ∆i

β = (∆1
β/2i−1)〉. The algorithm

continues until both steps ∆i
α, ∆i

β are equal, or inferior to
some predefined threshold values ∆final

α , ∆final
β that control

accuracy of axis localization.

c) Comparison of exhaustive search and hierarchical
search: The main interest in using the hierarchical mesh-
grid search method is to accelerate the task of the PIP
maximization. Let us compare the computational effi-
ciency of both search methods in terms of the number
of evaluations of A(α, β). This number is influenced by
the discretization parameters ∆α, ∆β, resp. ∆init

α , ∆init
β ,

∆final
α , ∆final

β of the exhaustive, resp. hierarchical mesh-
grid method.
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Fig. 7. Comparison of the number of evaluations of A(α, β) as a
function of discretization steps ∆exh = ∆final for exhaustive and
hierarchical mesh-grid searches.

Exhaustive search:

To determine the maximum of the function A(α, β)
with accuracy ∆α, ∆β, the rectangle 〈0◦, 180◦〉 ×
〈0◦, 180◦〉 is sampled along dimensions α, resp. β di-
mension with the step ∆α, resp. ∆β . The total number
of the angle function evaluations is equal to:

180◦

∆α
· 180◦

∆β
. (10)

Hierarchical mesh-grid search:

On each level, the discretization steps are divided by
a factor of 2. Given the initial ∆init

α , ∆init
β , and final

steps ∆final
α , ∆final

β , the number of levels is:⌈
N = max

{
log2

2∆init
α

∆final
α

, log2
2∆init

β

∆final
β

}⌉
.

(11)

There are (180/∆init
α ) · (180/∆init

β ) evaluations at
each level, so the total number of function A(α, β)
evaluations performed by the hierarchical mesh-grid
method is:

N ·
(

180
∆init

α

· 180
∆init

β

)
. (12)

In order to simplify the comparison, discretization steps
of both methods are assumed to be equal: ∆α = ∆β =
∆final

α = ∆final
β = ∆final, ∆init

α = ∆init
β = ∆init. Fig. 7

shows the number of evaluations of A(α, β) as a function
of ∆α = ∆β = ∆final, where ∆init is used as a parameter.
We observe that using a hierarchical mesh-grid method
leads to a significant decrease in computational cost.

B. Electrode Tip Localization

Once the electrode axis a(t) is identified, we determine
the coordinates of electrode endpoints. In most cases, the
electrode is not entirely comprised in the field of view as
only a small part of tissue is scanned by the scanning de-
vice. Therefore, we localize only one electrode endpoint
(referred to as electrode tip) that is located inside the field
of view.

Fig. 8. (a) Intensity profile along the estimated axis a(t) is used
to identify the part of the axis that passes through the electrode.
(b) Histograms of electrode and background voxels intensities are cal-
culated a priori to approximate the conditional probabilities P (el|I),
P (bg|I).

Let B(t) be the voxel intensity along the estimated axis
a(t) (5):

B(t) = I(a(t)); ∀t ∈ R : a(t) ∈ Ω. (13)

Fig. 8 shows an example of an intensity profile along the
estimated axis. While tracing the values of B(t) for in-
creasing t, let t∗ be the first value where B(t) decreases
under a predetermined threshold T . The coordinates of
the electrode tip are given by a(t∗).

The threshold value T is determined from two a pri-
ori estimated probability distributions: probability of the
electrode voxel P (el|I), resp. background voxel P (bg|I)
given the voxel intensity I. Parameter T is such that
P (el|T ) = P (bg|T ). To estimate these distributions, vox-
els were classified as electrode or background voxels in an
acquired dataset with known electrode position.

III. Experiments

Two types of 3-D ultrasound images were used to test
the algorithm robustness: numerical phantoms simulated
using the FIELD II software package [23], and real ultra-
sound images acquired with a 3-D ultrasound scanner. The
localization algorithm is implemented in MATLAB (The
MathWorks, Natick, MA). All tests were performed on a
Linux computer with a 64-bit Intel Core 2 processor at
2400 MHz.

A. Accuracy Assessment

Two measures are used to quantify the accuracy of the
proposed method. The first measure εtip evaluates the tip
localization accuracy:

εtip =
∥∥∥T − T̂

∥∥∥ , (14)

where T is the true electrode tip, T̂ is an estimated tip, and
‖ · ‖ is the Euclidean distance. Axis localization accuracy
εaxis is given by:

εaxis = max{‖E − Q1‖, ‖T − Q2‖}, (15)
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Fig. 9. Illustration of axis and endpoint accuracy evaluation. Ground-
truth electrode position is determined by the intercept point E and
electrode tip T . We compare it with an axis a(t) and a tip T̂ estimated
by the proposed method.

TABLE I
Parameters of Field II Used for Simulation of Numerical

Phantoms.

Transducer type Linear array
Number of elements 128
Element width [mm] 0.4
Element height [mm] 5
Kerf [mm] 0.025
Initial focus [mm] [0 0 55]
Central frequency [MHz] 7.5
Sampling frequency [MHz] 27

where E is the intercept point, Q1 are Q2 are the orthog-
onal projections of E and T on a(t) with respect to the
true axis, and a(t) is the estimated axis (Fig. 9).

B. Numerical Phantom

Simulated data were generated using the ultrasound
simulator FIELD II [23]. The simulator parameters were
set to imitate the ultrasound scanner Voluson 530D (GE
Healthcare, UK). We used a multi-element transducer to
produce in total 53 sector scan planes with B-mode angle
40◦, each of them composed of 71 scan lines. These planes
were angularly distributed over a tilt angle of 40◦ to scan
a 3-D region. Table I summarizes the parameters set in
FIELD II. The dimensions of the point spread function of
the ultrasound system were set to 0.2 mm in axial and
1 mm in both lateral and azimuthal directions.

We simulated a series of numerical phantoms represent-
ing a cuboid region of tissue containing a highly reflecting
inclusion corresponding to a metallic electrode. The di-
mensions of the tissue region were 50 × 50 × 30 mm. and
its axial distance from the probe was set to 35 mm. To
approximate the speckle pattern of biological tissue, the
spatial density of tissue diffusers was set to 3 per mm3.
Their reflection coefficients had normal distribution with
zero mean and variance equal to 1 [24]. The electrode was
represented by a cylindrical region of 0.3 mm in diame-
ter and 20 mm in length containing diffusers with spatial
density of 125 per mm3. Their reflection coefficients were
constant and equal to 5. Fig. 10 depicts an example of a

Fig. 10. Example of a 3-D numerical image simulated in FIELD II.
It represents a portion of biological tissue containing a highly scat-
tering inclusion such as electrode. Two planar sections are shown in
grayscale; one of them is passing through the electrode axis. Black
line-segment depicts electrode position estimated by the proposed
method.

Fig. 11. Achieved localization accuracy εaxis for different values of
the final angular step ∆final with standard deviation shown with
vertical bars. (a) A full chart. (b) A zoomed part for smaller ∆final

values.

3-D numerical phantom simulated in FIELD II. The ex-
act knowledge of electrode axis and tip location is used to
evaluate the algorithm accuracy.

1. Influence of Angular Step Size: The accuracy of the
PIP method is good if the angular step parameter ∆final is
small. However, small ∆final leads to an increase in com-
putational time. To find the optimal value of ∆final, we
performed 28 tests on a numerical phantom described in
the previous paragraph. The electrode axis position was es-
timated by the algorithm while varying ∆final from 0.125◦

to 32◦. Other parameters were constant: ∆init = 32◦, and
∆u = ∆v = 0.2 mm.

Fig. 11 illustrates axis localization accuracy εaxis as a
function of ∆final. We conclude that decreasing this param-
eter under 1◦ leads to an increase in computational time
(Fig. 12) without further improvement in axis localization
accuracy. We set ∆final to 1◦.
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Fig. 12. Time required to maximize the PIP transformation for vary-
ing ∆final with other parameters constant.

Fig. 13. Time required to maximize the PIP transformation for vary-
ing ∆u, ∆v with other parameters constant.

2. Influence of Displacement Steps ∆u, ∆v: The dis-
placement parameters ∆u, ∆v control the distance be-
tween adjacent lines of integration. While decreasing these
parameters improves accuracy, it also increases the compu-
tational time (Fig. 13). The same numerical phantom as in
Section III-B,1 was used to experimentally determine op-
timum values of ∆u, ∆v. The localization algorithm was
executed with fixed parameters ∆init = 32◦, ∆final = 1◦

and varying the displacement steps ∆u, ∆v from 0.0625 to
2 mm. Fig. 14 depicts the calculated axis accuracy εaxis as
a function of the displacement steps ∆u, ∆v. It shows that,
when ∆u, ∆v exceeds 0.25 mm, the mean and standard de-
viation of error in axis localization increases rapidly. We
propose to set ∆u, ∆v to 0.2 mm.

Fig. 14. Axis localization accuracy εaxis as a function of discretiza-
tion steps ∆u, ∆v. Vertical bars in each node show the standard
deviation.

Fig. 15. Axis (a) and tip (b) localization accuracy as a function of
image SNR.

Fig. 16. Axis (a) and tip (b) localization accuracy as a function of
electrode orientation with respect to probe axis.

3. Effect of Background Noise: In real applications, the
intensity of electrode and background voxels varies ran-
domly. To investigate the influence of background noise,
we simulated 14 numerical phantoms with the electrode at
the same position while increasing the background noise.
Given the mean µbg and the variance σ2

bg of background
voxels and the mean µ2

el and the variance σel of electrode
voxels, we define the signal-to-noise ratio (SNR) as the
logarithm of the expected energy of electrode voxels to
expected energy of background voxel intensities,

SNR = 10 log
µ2

el + σ2
el

µ2
bg + σ2

bg

[dB]. (16)

The value of SNR is used to quantify the ratio of elec-
trode intensity to background noise. The electrode axis
was localized in each phantom with fixed parameters:
∆init = 32◦, ∆final = 1◦ and ∆u = ∆v = 0.2 mm.

Experimental dependences of εaxis, εtip on SNR are de-
picted in Fig. 15. When background noise was increased,
we observed a decrease in both axis and tip localization ac-
curacy. The axis localization error grows rapidly for SNR
inferior to 9 dB.

4. Varying Electrode Orientation and Position: The an-
gle γ between the electrode axis and the probe axis was
varied from 0◦ to 160◦. The electrode axis and tip were lo-
calized in each phantom using our localization algorithm
with the same settings as in Section III-B,3.

Localization accuracy εaxis, εtip are shown in Fig. 16 as a
function of electrode orientation. Note that axis accuracy
εaxis is high for γ = 90◦, whereas the tip accuracy εtip
is low. This is a consequence of the anisotropic spatial
resolution of the ultrasound system.
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TABLE II
Achieved Localization Accuracy on Numerical Phantoms with Spherical Artifacts.

#image 1 2 3 4 5 6 7 8 9 mean

Spheres 2 2 2 3 3 5 5 6 6 3.44
SNR [dB] 10.03 11.87 15.02 8.46 10.44 7.17 16.01 11.51 15.02 11.72
εaxis [mm] 0.097 0.210 0.097 0.210 0.166 0.185 0.187 0.097 0.097 0.150
εtip [mm] 0.497 0.067 0.282 0.074 0.090 1.068 0.308 0.282 0.282 0.328
Time [sec] 678 681 679 674 920 670 895 674 915 754

Fig. 17. Example of a numerical phantom with two spherical artifacts
shown as wireframe spheres (with higher reflection coefficients). We
also show a planar cross section containing the electrode (marked
with line) and two perpendicular planar sections.

5. Nonhomogenous Background: We created a numer-
ical phantom with spherical artifacts to imitate the inho-
mogenity of real biological tissue. The spheres were ran-
domly placed, so they might overlap each other or the elec-
trode. The number of spheres varied between two and six,
the radius varied between 2 and 5 mm. The spatial density
of diffusers in spheres was 2.5 per mm3. Their reflection
coefficient varied randomly between 2 and 5. Fig. 17 de-
picts an example of such a phantom (dataset number 1 in
Table II). The exact knowledge of axis and tip locations
was used to evaluate the algorithm accuracy.

The PIP algorithm succeeded to localize the electrode
axis in all datasets. For each dataset accuracy of axis and
tip of electrode was evaluated and also SNR was computed.
The results are in the Table II. The mean accuracy of the
axis localization is 0.150 mm. The mean accuracy of tip lo-
calization 0.328 mm was similar to homogenous numerical
phantoms.

C. Cryogel Phantom

The algorithm was tested on real 3-D ultrasound data as
well. To simulate biological tissue with a highly reflecting
inclusion, a polyvinyl alcohol (PVA) cryogel phantom [25]
with dimensions 50 × 50 × 50 mm was used. Inside the
phantom there was a thin tungsten electrode of 150 µm in
diameter and length 20 mm (Fig. 18).

The phantom was scanned with a 3-D ultrasound scan-
ner Voluson 530D that was modified to provide RF data

Fig. 18. (a) Cuboidal of polyvinyl alcohol (PVA) cryogel phantom
mimicking acoustic properties of biological tissue. The dimensions
are 50×50×50 mm. (b) Tungsten electrode of 150 µm in diameter and
length 20 mm was introduced into the phantom prior to scanning.

[26]. The scanner was equipped with the S-VDW5-8B3-
D Voluson probe operating at central frequency 7.5 MHz.
Tilt angle was set to 40◦ at interval 0.75◦. The angle of
acquired B-mode sector images was 40◦ with the angu-
lar step 0.5◦. The phantom orientation and distance from
the probe was slightly varied between scanning to obtain
eight 3-D images of 53 × 71 × 3100 voxels (Fig. 19). The
axial resolution was 0.4 mm and the lateral resolution was
approximately 1 mm.

To evaluate accuracy εaxis and εtip, the intercept and
electrode tip coordinates were manually determined in
each dataset and considered as the ground-truth. The
boundary of phantom was excluded from the region of
interest so the input for algorithm consisted of only the
interior of the phantom. Table III summarizes localization
accuracy for each ultrasound image.

The mean computational time was 18.7 minutes for one
volume dataset. The mean accuracy on datasets with mean
SNR 17.7 dB was 0.301 mm for the electrode axis and
0.263 mm for the tip, which is satisfactory.

D. Breast Biopsy

To demonstrate the usability of PIP on real biological
tissue, we ran the algorithm on data from breast biopsy
(Fig. 20). This dataset was taken from 3-D ultrasound
scanner GE Voluson E8 with the probe operating at a cen-
tral frequency of 12 MHz. The 3-D image was computed
from sliding B-mode sector images at interval 0.1 mm, the
total width of the volume was 38 mm. The angle of ac-
quired B-mode sector images was 30◦ with an angular step
of 0.1448◦. The volume depth was 19 mm. Inside the breast
there was a 19-gauge needle (1.092 mm outer diameter)
made of stainless steel.
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TABLE III
Achieved Localization Accuracy on Real Ultrasound Images.

#image 1 2 3 4 5 6 7 8 mean

εaxis [mm] 0.218 0.663 0.323 0.157 0.287 0.200 0.442 0.118 0.301
εtip [mm] 0.120 0.003 0.283 0.174 0.450 0.463 0.370 0.245 0.263
SNR [dB] 17.9 18.1 17.6 19.1 14.6 16.8 18.6 19 17.7
Time [sec] 451 309 1865 1727 393 779 1846 1595 1121

Fig. 19. Example of 3-D ultrasound image of PVA cryogel phantom
submerged in water. Inside the phantom there was a tungsten elec-
trode. Twoplanar sections (one of them passing through the electrode
axis) are shown in grayscale. Black line-segment represents estimated
electrode position.

Fig. 20. 3-D view of data from breast biopsy. The boundary geometry
of 3-D data is marked by thin lines. There is one planar section with
a needle in the upper part and seven perpendicular planar sections.

To evaluate accuracy εaxis, the electrode was manually
localized in the dataset and the position was considered as
the ground-truth. We obtained axis localization accuracy
0.193 mm, which is similar to results on phantom images.
We could not evaluate the electrode tip accuracy because
the tip was located outside the image. Our method per-
formed satisfactorily, even though the SNR of this dataset
was only 5.43 dB, which is typical for real data with loga-
rithmical compression.

IV. Conclusions

The use of 3-D ultrasound imaging modality in image-
guided interventions is increasing. In many of these ap-
plications, it is important to determine the position of a
needle and its tip. We propose a new technique for elec-
trode localization in a 3-D ultrasound image. It permits
one to automatically determine the electrode axis and the
electrode tip. The axis is found by maximizing the PIP
transform. A hierarchical mesh-grid search is used to ac-
celerate this task. The tip position is determined by opti-
mal thresholding of voxel intensities along the estimated
axis.

The experiments performed on numerical phantoms
show that the localization is robust with respect to the
background noise and that accuracy does not depend sig-
nificantly on the electrode orientation. Achieved localiza-
tion accuracy is between 0.2 and 0.3 mm for real images,
which is comparable to the axial resolution of the ultra-
sound system and similar to other state-of-the-art work.
Our method is capable to localize very thin electrodes of
diameter less than 1 mm. The consistence of the results ob-
tained on numerical phantoms and on real 3-D ultrasound
data of a PVA phantom suggests that this approach is both
robust and accurate under realistic conditions. We also
have succeeded in localizing the needle in breast biopsy
images. However, currently the region of interest must be
specified very carefully.

The proposed method might be slow for some applica-
tions in its current implementation. The processing time
of the current algorithm implementation in MATLAB is
tens of minutes. However, it is easy to obtain substantial
acceleration using a multiresolution approach [27]. Rewrit-
ing the method in a compiled language such as C or Java
also will accelerate it substantially.
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sité Claude Bernard Lyon where he teaches in
the Electrical Department of the Technical In-
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