
Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced
applications
D. Klir, A. V. Shishlov, V. A. Kokshenev, P. Kubes, A. Yu. Labetsky, K. Rezac, R. K. Cherdizov, J. Cikhardt, B.
Cikhardtova, G. N. Dudkin, F. I. Fursov, A. A. Garapatsky, B. M. Kovalchuk, J. Krasa, J. Kravarik, N. E.
Kurmaev, H. Orcikova, V. N. Padalko, N. A. Ratakhin, O. Sila, K. Turek, V. A. Varlachev, A. Velyhan, and R.
Wagner 
 
Citation: Physics of Plasmas 23, 032702 (2016); doi: 10.1063/1.4942944 
View online: http://dx.doi.org/10.1063/1.4942944 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/23/3?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics 
Phys. Plasmas 21, 031209 (2014); 10.1063/1.4865223 
 
Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra 
Phys. Plasmas 20, 062701 (2013); 10.1063/1.4810805 
 
Pinching of ablation streams via magnetic field curvature in wire-array Z-pinches 
Phys. Plasmas 19, 022109 (2012); 10.1063/1.3685726 
 
Deuterium gas-puff Z-pinch implosions on the Z acceleratora) 
Phys. Plasmas 14, 056309 (2007); 10.1063/1.2710207 
 
Neutron production and implosion characteristics of a deuterium gas-puff Z pinch 
Phys. Plasmas 14, 022706 (2007); 10.1063/1.2446177 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  188.75.128.27 On: Fri, 04 Mar

2016 16:48:01

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/779483913/x01/AIP-PT/PoPArticleDL_012716/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=D.+Klir&option1=author
http://scitation.aip.org/search?value1=A.+V.+Shishlov&option1=author
http://scitation.aip.org/search?value1=V.+A.+Kokshenev&option1=author
http://scitation.aip.org/search?value1=P.+Kubes&option1=author
http://scitation.aip.org/search?value1=A.+Yu.+Labetsky&option1=author
http://scitation.aip.org/search?value1=K.+Rezac&option1=author
http://scitation.aip.org/search?value1=R.+K.+Cherdizov&option1=author
http://scitation.aip.org/search?value1=J.+Cikhardt&option1=author
http://scitation.aip.org/search?value1=B.+Cikhardtova&option1=author
http://scitation.aip.org/search?value1=B.+Cikhardtova&option1=author
http://scitation.aip.org/search?value1=G.+N.+Dudkin&option1=author
http://scitation.aip.org/search?value1=F.+I.+Fursov&option1=author
http://scitation.aip.org/search?value1=A.+A.+Garapatsky&option1=author
http://scitation.aip.org/search?value1=B.+M.+Kovalchuk&option1=author
http://scitation.aip.org/search?value1=J.+Krasa&option1=author
http://scitation.aip.org/search?value1=J.+Kravarik&option1=author
http://scitation.aip.org/search?value1=N.+E.+Kurmaev&option1=author
http://scitation.aip.org/search?value1=N.+E.+Kurmaev&option1=author
http://scitation.aip.org/search?value1=H.+Orcikova&option1=author
http://scitation.aip.org/search?value1=V.+N.+Padalko&option1=author
http://scitation.aip.org/search?value1=N.+A.+Ratakhin&option1=author
http://scitation.aip.org/search?value1=O.+Sila&option1=author
http://scitation.aip.org/search?value1=K.+Turek&option1=author
http://scitation.aip.org/search?value1=V.+A.+Varlachev&option1=author
http://scitation.aip.org/search?value1=A.+Velyhan&option1=author
http://scitation.aip.org/search?value1=R.+Wagner&option1=author
http://scitation.aip.org/search?value1=R.+Wagner&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4942944
http://scitation.aip.org/content/aip/journal/pop/23/3?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/21/3/10.1063/1.4865223?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/6/10.1063/1.4810805?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/2/10.1063/1.3685726?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/5/10.1063/1.2710207?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/2/10.1063/1.2446177?ver=pdfcov


Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons
for advanced applications

D. Klir,1 A. V. Shishlov,2,3 V. A. Kokshenev,2 P. Kubes,1 A. Yu. Labetsky,2 K. Rezac,1

R. K. Cherdizov,2 J. Cikhardt,1 B. Cikhardtova,1 G. N. Dudkin,3 F. I. Fursov,2

A. A. Garapatsky,3 B. M. Kovalchuk,2,3 J. Krasa,4 J. Kravarik,1 N. E. Kurmaev,2

H. Orcikova,5 V. N. Padalko,3 N. A. Ratakhin,2,3 O. Sila,1 K. Turek,5 V. A. Varlachev,3

A. Velyhan,4 and R. Wagner5

1Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, 16627 Prague 6,
Czech Republic
2Institute of High Current Electronics SB RAS, 2/3 Akademichesky Ave., 634055 Tomsk, Russia
3National Research Tomsk Polytechnic University, 30 Lenina Ave., 634050 Tomsk, Russia
4Institute of Physics, ASCR, Na Slovance 2, 18221 Prague 8, Czech Republic
5Nuclear Physics Institute, ASCR, Na Truhlarce 39, 18086 Prague 8, Czech Republic

(Received 29 September 2015; accepted 16 February 2016; published online 4 March 2016)

A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast

ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 6 0.5)� 1012 was emitted

within 20 ns implying the production rate of 1020 neutrons/s. High neutron yields resulted from the

magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial

direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25 MeV ions

were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions

approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 1016 and 1013,

respectively. Utilizing these ions offers a real possibility of various applications, including the

increase of neutron yields or the production of short-lived isotopes in samples placed in ion paths.

On the basis of our experiments with various samples, we concluded that a single shot would have

been sufficient to obtain GBq positron activity of 13N isotopes via the 12C(d,n)13N reaction.

Furthermore, the first z-pinch generated neutron radiograph produced by�20 ns pulses is presented

in this paper. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942944]

I. INTRODUCTION

At present, z-pinches are known as powerful sources of

x-rays.1 An x-ray power of 200 TW was achieved by an effi-

cient compression and conversion of stored electrical energy

into plasmas. A high efficiency of z-pinch generators is not

limited to the production of x-rays. Z-pinches and plasma

foci are also investigated as portable sources of ions and neu-

trons for industrial, scientific, and medical applications.2–7

For most of the contemporary applications, z-pinches cannot

be competitors of conventional accelerators such as cyclo-

trons and RF accelerators. However, there is a niche that z-

pinches could occupy and that should be based on a powerful

ion pulse of a nanosecond duration. Short, multi-MeV ion

pulses can be generated also by ultrashort-pulse laser sys-

tems. For instance, laser-driven ions have been used to pro-

duce short-lived isotopes8,9 and neutron beams.10 In this

paper, we therefore aim to demonstrate that z-pinches may

eventually be competitive sources of nanosecond ion and

neutron pulses.

In the past 10 years, we studied the emission of fusion

neutrons in various z-pinch configurations. We researched a

deuterated fibre z-pinch,11 a z-pinch with a neck from micro-

porous deuterated polyethylene,12 a wire–array z-pinch

imploding onto a deuterated fibre,11 and a deuterium gas-

puff z-pinch13–16 on the S-300 and GIT-12 generators. At the

current of 1.5–3 MA, the highest neutron yields on the order

of 1011 were produced in optimized deuterium gas-puff

z-pinches.17 A further increase of neutron yields by one

order of magnitude, namely, up to 3:6� 1012, was achieved

by a novel configuration of a deuterium gas-puff z-pinch at 3

MA currents.18,19 On the basis of neutron TOF spectra and

other diagnostics, we concluded that the efficient neutron

production resulted from the generation of high energy deu-

terons and probably also from their magnetization inside

plasmas.18 A stack of CR-39 track detectors on the z-pinch

axis showed hydrogen ions up to 38 MeV. The observed

energies were about five times greater than the maximum

deuteron energy observed in previous dense plasma focus

and z-pinch experiments.16,20–23 The energies of hydrogen

ions up to 38 MeV were also larger than the applied pinch

voltages in the largest pulsed power facilities, and far beyond

theoretical predictions and numerical simulations for MA

currents.24 Evidently, the ion acceleration and neutron pro-

duction in z-pinches are still not well understood (see, e.g.,

Ref. 25 and references therein). As a result, our recent

experiments have been focused on the characterization of

ion and neutron emission from the novel configuration of a

deuterium gas-puff z-pinch. Whereas the neutron emission

was characterized to a large extent in Ref. 19, the basic prop-

erties of ion emission are presented in this paper.

In Section II, we describe a novel configuration of a

gas-puff z-pinch accelerating a large number of ions to

multi-MeV energies. Section III presents the most important

parameters of deuterons produced in a deuterium gas-puff,

1070-664X/2016/23(3)/032702/10/$30.00 VC 2016 AIP Publishing LLC23, 032702-1

PHYSICS OF PLASMAS 23, 032702 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  188.75.128.27 On: Fri, 04 Mar

2016 16:48:01

http://dx.doi.org/10.1063/1.4942944
http://dx.doi.org/10.1063/1.4942944
http://dx.doi.org/10.1063/1.4942944
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4942944&domain=pdf&date_stamp=2016-03-04


whereas the results obtained with natural hydrogen gas are

mentioned in Section IV. The discussion of our experimental

results is the subject of Section V. We show that z-pinches

exceed many parameters achievable with state-of-the-art

laser technology even though they have not been researched

to such an extent as laser-based sources. In order to demon-

strate the usefulness of z-pinches, Section VI provides two

examples of potential applications. The first example is the

production of positron-emitting isotopes for nuclear medi-

cine. It seems that the number of fast ions accelerated in a

single shot is sufficient for the production of GBq positron

activity of 13N isotopes. The second exemplary application is

a neutron radiograph that was obtained with nanosecond

pulses generated by our z-pinch. Finally, conclusions are

summarized in Section VII.

II. NOVEL CONFIGURATION OF A DEUTERIUM
GAS-PUFF Z-PINCH

Z-pinch experiments with deuterium gas puffs have

been carried out on the GIT-12 generator at a 3 MA current

and microsecond rise-time.26 Recently, a novel configuration

of a deuterium gas-puff z-pinch has been used to accelerate

deuterons and to generate DD fusion neutrons.18,19 In order

to form a homogeneous, uniformly conducting layer at a

large initial radius, an inner deuterium gas puff was sur-

rounded by an outer hollow cylindrical plasma shell. The

plasma shell consisting of hydrogen and carbon ions was

formed at the diameter of 350 mm by 48 plasma guns. A lin-

ear mass of the plasma shell was about 5 lg/cm, whereas a

total linear mass of deuterium gas in single or double-shell

gas puffs was between 80 and 100 lg/cm. The implosion

lasted �700 ns and seemed to be stable up to a 4 mm radius

as shown in Fig. 1.

During stagnation, m¼ 0 instabilities became more pro-

nounced. When a disruption of necks occurred (t¼ 0 ns in

Fig. 1, see, e.g., Ref. 25 for more information about disrup-

tion), high energy (>2 MeV) bremsstrahlung radiation to-

gether with a main neutron pulse was produced. A peak

neutron yield reached (3.6 6 0.5)� 1012, whereas a dose of

>200 keV photons of up to 100 Gy (air kerma) was meas-

ured with TLF-700 thermoluminescence dosimeters27 at

3 cm behind the anode surface. Calculating with a 20 ns du-

ration, we obtain the production rate of 1020 neutrons/s and

5� 109 Gy/s.

In Ref. 18, we demonstrated that high neutron yields

resulted from the magnetization of fast deuterons inside plas-

mas. Whereas deuterons were trapped in the radial direction,

a lot of fast ions escaped the z-pinch along the axis. In order

to obtain more detailed information about these ions, we

have therefore used various diagnostic techniques in our

recent experiment. The most important findings are

described in Sec. III.

III. CHARACTERIZATION OF ON-AXIS IONS

A. Energies of hydrogen ions

The energies of accelerated ions were measured with the

stack of CR-39 solid-state nuclear track detectors. The stack

was placed 19 cm below the cathode mesh. Figure 2 shows

the scheme of diagnostics and a typical result of deuteron- or

proton-induced tracks in the CR-39 detectors.

The analysis of tracks in the shot presented in Fig. 2

showed that all CR-39 layers were saturated by high-energy

hydrogen ions. It implied more than 1010 of >30 MeV hydro-

gen ions per steradian. An exemplary circular footprint and

microphotographs are displayed in Fig. 2(c). On the fifth

CR-39 layer, there was no significant difference in the

FIG. 1. Gated soft x-ray images of the novel configuration of a deuterium z-

pinch. The time t¼ 0 corresponds to the disruption accompanied by the

sharp onset of >2 MeV bremsstrahlung radiation and the start of main neu-

tron emission. Note: The images were combined from two shots with the im-

plosion time of �670 ns.

FIG. 2. Measurement of ion energies by the stack of CR-39 track detectors.

(a) Scheme of the on-axis diagnostics of ion energies. (b) The stack of CR-

39 detectors with aluminum absorbers. (c) Circular footprint on the fourth

CR-39 detector with the microphotographs of the proton and/or deuteron-

induced tracks etched for 2 h in 30% KOH at 70 �C. Neutron background

corresponds to the area of the CR-39 detectors filtered by 9.25 mm of alumi-

num. Shot No. 1610, (2.9 6 0.3)� 1012 neutrons.

032702-2 Klir et al. Phys. Plasmas 23, 032702 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  188.75.128.27 On: Fri, 04 Mar

2016 16:48:01



number of tracks behind 4.25 mm and 9.25 mm of aluminum.

Therefore, these tracks were assigned to neutron-induced

recoil protons. As far as the fourth CR-39 detector is con-

cerned, the number of tracks behind 4.25 mm of aluminum

was higher than the background created by fast neutrons (see

Fig. 2). As a result, these tracks were assigned to fast hydro-

gen ions and the cut-off energy of broad energy spectra of

hydrogen ions was estimated as 40 MeV, i.e., the energy of

protons penetrating 4.25 mm of aluminum and 3.6 mm of

CR-39 material.

We intended to confirm high-energy deuterons on the

axis by another diagnostic technique. For this reason, we

placed various samples on the z-pinch axis below the cath-

ode mesh. After a shot, the nuclear activation analysis of

these samples was performed with a high-purity Ge detector.

In the case of duraluminum and tungsten-copper samples,

the 27Al(d,x)24Na and 182W(d,3n)181Re reactions were iden-

tified by post-shot gamma-ray spectroscopy indicating an

abundance of >15 MeV deuterons on the z-axis (cf. Fig. 3).

The number of ions produced in a single shot was suffi-

cient to activate on-axis samples for several months. Among

radionuclides with a half-life of several months, we observed

isotopes of cobalt and magnesium which were produced by

reactions of fast deuterons with the cathode mesh, namely,

by 56Fe(d,n)57Co, 56Fe(d,2n)56Co, 56Fe(d,a)54Mn reactions.

The isotopes of 57Co, 56Co, and 54Mn have the half-lives of

272 days, 77 days, and 312 days, respectively.

The abundance of multi-MeV ions caused that the ex-

perimental chamber was activated after each shot. Therefore,

we let the experimental chamber cool down, and we opened

it the following day. It prevented us from characterizing the

ion flux by the detection of short-lived radioisotopes with a

low-energy threshold and with a half-life in minutes.30 In

order to estimate the total number of fast deuterons, we used

therefore the procedure that is described in Subsection III B.

B. Total number of multi-MeV deuterons

Our previous z-pinch experiments with deuterium gas-

puffs were focused on neutron production (see, e.g., Ref. 18).

Therefore, to obtain the information about deuterons, we

took advantage of our comprehensive neutron diagnostics19

and we characterized the escaping ions via neutron-producing

reactions.

In order to distinguish primary DD neutrons from second-

ary neutrons produced in a sample, we decided to use lithium

fluoride. We placed a 3� 3 cm2 square sample onto the axis

3 mm below the cathode mesh. As shown in Fig. 4, the catcher

with a natural abundance of 7Li isotopes significantly

increased a total neutron yield (up to 6� 1012) and changed a

neutron spectrum. According to a BDS-10000 super-heated

fluid detector,29 the number of neutrons between 10 and

20 MeV was increased by one order of magnitude up to

(5 6 1)� 1011. Most of these neutrons originated from the
7Li(d,n) reaction with the Q-value of 15.03 MeV. However,

the residual nuclei of this reaction often remain in excited

states and three-body processes, e.g., 7Li(d,nþ a)4He, contrib-

ute to neutron production. Consequently, >10 MeV neutrons

formed approximately a quarter of the neutron yield produced

by the LiF catcher (see, e.g., Fig. 4(b) or Ref. 31). Calculating

with 5� 1011 of >10 MeV neutrons, the LiF catcher produced

approximately (2.0 6 0.5)� 1012 neutrons. When the number

of neutrons from the LiF catcher is known, it is possible to

better characterize the ion flux. The total number of deuterons

FIG. 3. (a) Gamma-ray spectrum of a copper-tungsten sample placed 10 cm

below the cathode mesh and activated by fast deuterons in shot No. 1691,

(2.1 6 0.3)� 1012 neutrons. (b) Energy dependence of the 182W(d,3n)181Re

reaction cross-section.28 The half-live of 181Re isotopes is 19 h. Note: 181Re

isotopes can be produced also by the 182W(p,2n) reaction with a somewhat

lower threshold.

FIG. 4. (a) Radial neutron time-of-flight signal at 25.7 m in the shots without

a catcher (dotted black line, shot No. 1677, 3.2� 1012 neutrons) and with a

LiF catcher (solid red line, shot No. 1697, 6� 1012 neutrons). The relative

scale of the y-axis is the same for both waveforms. When interpreting the

ToF signals, the sensitivity of the ToF detector to neutrons with different

energies had to be taken into consideration. (b) Experimental radial neutron

energy spectra in the shots with and without a LiF catcher; theoretical neu-

tron spectra of the 7Li(d,nþ a)4He reaction for 2 MeV deuterons and two ob-

servation angles of 60� or 150� with respect to incident deuterons.28
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interacting with the LiF catcher Nd can be estimated from the

number of neutrons NLiF, thick-target yield YLiFðEdÞ, and deu-

teron energy spectra f ðEdÞ as

Nd ¼
NLiF

Ð
f Edð ÞdEdÐ

f Edð ÞYLiF Edð ÞdEd

: (1)

If we use the LiF thick-target yield from Fig. 5 and the

approximate distribution of deuteron kinetic energy deduced

from DD neutron spectra f ðEdÞ ¼ dNd=dEd / E�2
d (cf. Ref. 19),

we find out that 1016 deuterons above 1 MeV collided with

the LiF catcher and that the total energy carried by >1 MeV

deuterons approached 5 kJ. There is some uncertainty since

the spectrum of deuterons interacting with the catcher was

not measured directly and since the thick-target yield could

be influenced by different stopping power in target-ablation

plasmas.32 It is also necessary to take into account that our

z-pinch was optimized with respect to high neutron yields

from deuterium plasmas and that the number of shots with a

LiF catcher was quite low. Therefore, it is possible that the

number and/or energies of deuterons interacting with a

catcher can be increased in future experiments.

C. Duration of ion pulses

The LiF catcher was used not only to estimate the total

number of on-axis ions but also to measure the duration of an

ion pulse. It was difficult to measure the ion pulse duration by

standard methods (e.g., with (p,c) reactions, Faraday cups,

Rogowski coils, and dB/dt loops) because of strong >2 MeV

bremsstrahlung background, ion beam neutralization in deute-

rium gas, and harsh electromagnetic environment inside the

experimental chamber. Therefore, we tried to convert deuter-

ons to neutrons by a catcher and to measure pulse durations by

our neutron time-of-flight detectors. To measure the time of

neutron production, it was necessary to place one time-of-flight

detector as close to the neutron source as possible. However,

even at 2 m, the time-of-flight signal is strongly dispersed due

to a very wide neutron energy spectra from our deuterium gas-

puff (cf. shot No. 1677 in Fig. 4). Fortunately, the nuclear reac-

tions of deuterons with 7Li isotopes produced the radial neu-

tron peak between 10 and 14 MeV as shown in Fig. 4. At a 2 m

distance, the dispersion of this neutron peak of about 7 ns was

on the order of temporal resolution of our detectors.33 Fig. 6

shows the exemplary result from two shots with the shortest

and the longest ion emission. When the dispersion of the main

neutron peak and the tail formed by <10 MeV neutrons are

taken into account, we obtain the FWHM of ion pulses between

10 and 30 ns. Calculating with the average value of 20 ns and

with 1016 fast deuterons, we find out that the current of

>1 MeV deuterons was on the order of 100 kA. Fig. 6 indicates

that there was some correlation between neutron emission and

bremsstrahlung radiation. This indication was supported by the

measurements of neutron yields and doses of bremsstrahlung

radiation. A nice correlation between the number of neutrons

and the number of >200 keV photons is shown in Fig. 7. This

is an important result since the correlations imply that accelera-

tion of electrons was closely connected with ion acceleration

mechanism which is still a source of debate.

D. Ion emission anisotropy

In the preceding paragraphs, we presented the energy

and number of deuterons escaping the z-pinch along the axis.

To characterize further the escaping deuterons, it was desira-

ble to measure the angular distribution of ion emission. For

this purpose, we placed large samples of CR-39 detectors

and HD-V2 GafChromic films at 19 cm below the cathode

FIG. 5. Thick-target neutron yields from LiF (solid black line) and graphite

(dashed red line), the distribution of deuteron kinetic energy (solid blue

line). Thick-target yields were calculated from ENDF and SRIM data-

bases28,34 using the procedure described in Ref. 30.

FIG. 6. Neutron ToF signal at 2 m (solid black line) and bremsstrahlung

radiation measured by a hard x-ray diode in the radial direction (dashed red

line). A 1:4� 1:4 cm2 LiF sample was placed 3 mm below the cathode

mesh. (a) Shot No. 1766. (b) Shot No. 1768.
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mesh. In Fig. 8, you can see an exemplary result of deuteron-

and proton-induced signals at the detectors. If we assume that

the radiation dose at the calibrated HD-V2 films was given by

deuterons and that the average energy deposited by one deu-

teron in an active layer was 0.1 MeV (cf. Fig. 8(b)), we will

find out that the total number of >25 MeV deuterons was

about 1013. A similar estimate was made by the analysis of the

CR-39 detectors. Nevertheless, 1013 is only a rough estimate

of the number of >25 MeV deuterons. Firstly, the number of

the fastest deuterons varied strongly from shot to shot.

Secondly, our detectors gave the information about a solid

angle of 0.8 sr only. Thirdly, the average energy deposited by

one deuteron depends on the energy spectrum. Finally, a linear

energy transfer (LET) effect has to be taken into account.35

As shown in Fig. 8, the emission of 25 MeV deuterons

(or 20 MeV protons) was quite collimated since a large num-

ber of ions were emitted into a cone with an opening angle

of 2h¼ 250 mrad (assuming a localized ion source and

neglecting any focusing effect on emitted ions). On the basis

of the measurement in several shots, it was evident that the

ion emission was azimuthally asymmetric. Usually, the ion

beam divergence was higher in one direction. Another inter-

esting feature was the detection of relatively long (up to

10 cm) and very thin (sub-millimeter) lines. It does not seem

probable that such thin lines could be produced by radial

electric fields. A more realistic hypothesis is that ions from a

point source were dispersed by magnetic fields in the z-

pinch. In this respect, it was highly desirable to know if the

source of 25 MeV deuterons was so localized. For this rea-

son, we measured the spatial distribution of ion source as

described in the following paragraphs.

E. Spatial distribution of multi-MeV ion source

In order to obtain information about the spatial distribu-

tion of an ion source, we placed an ion pinhole camera on the

z-pinch axis below the cathode mesh. The scheme of the ex-

perimental set-up and exemplary results are shown in Fig. 9.

In the case of the deuteron energy above 17 MeV, the

axial ion pinhole camera detected several localized spots as

was expected from the measurement of ion emission anisot-

ropy. The spot diameter of about 1.3 mm was at the resolu-

tion limit of the ion pinhole camera.

The ion pinhole camera also recorded images of ions

with energies below 15 MeV. At these energies, the influence

of magnetic fields on ion trajectories is even more important

and should be taken into account. Therefore, the interpreta-

tion of ion pinhole images below 15 MeV requires an in-

depth analysis. This will be the subject of our future work.

IV. OPTIMIZATION OF HYDROGEN GAS PUFF

The above-mentioned results indicate that megaampere

gas-puff z-pinches are able to accelerate deuterons to multi-

MeV energies. Naturally, it could be asked if it is also

FIG. 7. The correlation of neutron yields with the dose of >200 keV photons

measured by a hard x-ray diode in the radial direction. Shots with deuterium

gas-puffs without any catcher.

FIG. 8. Measurement of ion emission anisotropy. (a) Scheme of the on-axis diagnostics of anisotropy measurement. The stack consists of a duralumin absorber

(1.1 mm), the first CR-39 layer (1.1 mm), a HD-V2 gafchromic film (0.1 mm), and the second CR-39 layer (1.1 mm). (b) The energy deposited by one deuteron

in the active layer of the HD-V2 film calculated with the TRIM code.34 (c) The images detected by the HD-V2 film and the second CR-39 detectors in shot

No. 1677, (3.2 6 0.5)� 1012 neutrons. In this particular shot, 33 MeV neutrons were measured by an axial neutron ToF detector and many 24Na isotopes from

the 27Al(d,x)24Na reaction were identified by post-shot gamma-ray spectroscopy. Therefore, it is possible that a large number of �30 MeV deuterons were pro-

duced and that the pattern in the images was created by fast deuterons.
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possible to accelerate ions by a z-pinch operating with a dif-

ferent gas? If so, then the following question is what the opti-

mal conditions are? In order to answer these questions, we

replaced deuterium by natural hydrogen gas. On the basis of

our previous research, we expected that gas-injection time

played an important role because the spread of gas at large

distances made the current concentration onto the axis more

difficult.16,18 Therefore, we carried out several shots with

various gas-injection times, whereas the parameters of the

GIT-12 generator and the plasma guns remained the same as

in the shots with deuterium gas puffs. The expansion of

hydrogen gas is faster than deuterium gas by a factor of

vH2
=vD2

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mD2

=mH2

p
¼:

ffiffiffi
2
p
¼: 1:4. Indeed, the highest neutron

yield with hydrogen gas was observed in the shot when the

injection time optimal for deuterium was reduced 1.4-times,

i.e., from 300 ls to 220 ls. At the 220 ls injection time, the

total linear mass of hydrogen gas was only �30 lg/cm, and

the stagnation occurred 100 ns earlier at a lower current of

about 2.3 MA. It should be mentioned that the number of

natural hydrogen molecules for m̂H2
� 30 lg/cm is the same

as the number of deuterium molecules for m̂D2
� 60 lg/cm.

Therefore, taking the current I and the atomic number A into

account, the electron drift velocity at stagnation ue /
AIstag=m̂ could be similar in both cases, i.e., with deuterium

as well as with natural hydrogen gas puff.

When the hydrogen gas-puff z-pinch was optimized, we

observed analogical results to deuterium gas. The implosion

seemed to be stable up to a 4 mm radius. During stagnation,

m¼ 0 instabilities developed and, when a disruption of necks

occurred, the plasma impedance exceeded 0.35 X. The high

energy (>2 MeV) bremsstrahlung radiation was generated to-

gether with high-energy protons. Maximum proton energies of

20 MeV were observed by the stack of RCF and CR-39 detectors

(cf. scheme in Fig. 2). Fig. 10 shows a radial neutron spectrum

and a CR-39 detector with etched tracks induced by fast protons.

Interestingly, the hydrogen gas-puff z-pinch produced a relatively

high yield of 1011 neutrons per shot. In the case of natural hydro-

gen gas, most of the neutrons were generated by the interaction

of fast protons with the cathode mesh or with the experimental

chamber. Therefore, neutron yields as well as the radioactivity of

the experimental chamber after a shot were good indicators of

great numbers and high energies of accelerated protons.

V. OTHER POWERFUL SOURCES OF MULTI-MEV IONS

In Sections III and IV, we have presented several impor-

tant parameters of ion pulses generated by the novel configura-

tion of the gas-puff z-pinch. We showed that the deuterium

gas-puff z-pinch at the 3 MA current is able to accelerate

hydrogen ions up to 38 MeV energies. This is an unprece-

dented energy which is several times greater than the maxi-

mum energies observed in previous z-pinch and plasma focus

experiments (cf. Refs. 20 and 37). The total number of

>1 MeV and >25 MeV deuterons were 1016 and 1013, respec-

tively. High-energy ions were quite collimated since a large

number of >25 MeV deuterons were emitted into a 250 mrad

cone. The ion pulse seemed to be closely correlated with

>200 keV bremsstrahlung radiation and lasted for about 20 ns.

The total current of >1 MeV deuterons approached 100 kA.

At this point, it might be interesting to mention other

powerful sources of multi-MeV ions. In the past 15 years,

FIG. 9. Measurement of the spatial distribution of the ion source. (a) Scheme

of the axial ion pinhole camera with the magnification of 0.6 and the pinhole

diameter of 0.5 mm. (b) The stack of 6 pairs of RCF and CR-39 detectors in

shot No. 1770. (c) The ion pinhole images detected by the third, fourth, and

fifth pair of RCF and CR-39 detectors in shot No. 1770, (1.7 6 0.4)� 1012 neu-

trons. Spatial scales correspond to the plane of the cathode mesh.

FIG. 10. Experimental results with the hydrogen gas-puff z-pinch in shot

No. 1698, (1.2 6 0.2)� 1011 neutrons. (a) Radial neutron energy spectrum.

(b) Circular footprint on the second CR-39 detector with the microphoto-

graph of the proton-induced tracks etched for 2 h in 30% KOH at 70 �C.
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ion acceleration was extensively researched on intense

ultrashort-pulse laser systems (see, e.g., Refs. 38–40 and refer-

ences therein). Recently, successful acceleration of deuterons

has been achieved on the VULCAN41,43 and Trident10,44

lasers. On the Trident laser, very efficient BOA (break out

afterburner) mechanism accelerated 5� 1011 deuterons with a

>15 MeV energy into a 250 mrad cone.10 The comparison of

these ultrashort-pulse lasers with our z-pinch-based source

could be somewhat misleading since the parameters of the gen-

erators as well as the properties of ion emission differ signifi-

cantly. Nevertheless, when looking on ion numbers and

energies only, our results clearly demonstrate how attractive a

z-pinch as an ion source could be. In addition to that, ion accel-

eration in gas-puff z-pinches has not been studied to such an

extent as in laser-target interaction. Therefore, there is a chance

that z-pinch experiments can be optimized and above-

mentioned results can be exceeded in the near future.

For completeness, mention should be made of pinched-

beam ion diodes. In the 1980 s, intense pulsed ion beams

were researched as inertial-confinement-fusion drivers (see,

e.g., Refs. 45 and 46 for more details). Published data about

deuteron beams are rather scarce, but there is some informa-

tion about experiments focused on proton acceleration. One

of the most successful experiments was carried out on the

Aurora pulsed-power generator which was able to accelerate

5� 1016 protons up to 5 MeV energies.47 A 160 ns FWHM

pulse implied an ion current of about 50 kA. The ions

appeared to originate primarily from a small area (2–4 cm2)

at an anode. More recently, a pinched-beam ion diode has

been fielded on the Mercury pulsed-power machine with a

shorter (50 ns) pulse duration at 3.5 MV.48 Even higher volt-

age of 6 MV was applied in experiments with Hermes III.49

Evidently, the 38 MeV peak energy of hydrogen ions in our

experiment was significantly higher than the energy achieved

with high-voltage ion diodes even though the initial voltage

applied on the GIT-12 was lower by one order of magnitude

than on the Mercury or Hermes III generators.

A meaningful comparison of various ion sources would

require a detailed discussion of many physical and technical

parameters. Since the above-mentioned ion sources and

experiments differ substantially from each other, it is not

easy to find common quantities in literature. Nevertheless,

we attempted to find some common quantities and we list

the most important ones in Table I. As shown in Table I,

each of these powerful ion sources has unique properties

with respect to parameters of ion emission. In a simplified

way, we can say, that the basic parameters of our gas-puff z-

pinch lie somewhere between values achieved with state-of-

the-art lasers and powerful pinched-beam ion diodes.

The unique parameters of a z-pinch-based ion source

imply a possibility of traditional as well as innovative applica-

tions. Two exemplary applications are described in Sec. VI.

VI. APPLICATIONS OF DEUTERIUM GAS-PUFF
Z-PINCHES

A. Production of positron-emitting radioisotopes

One of the traditional applications of multi-MeV ion

sources is the production of positron-emitting radioisotopes T
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used in nuclear medicine. In the past 15 years, several laser

and plasma focus experiments were carried out to obtain

high activity of bþ emitting nuclei after the bombardment of

different materials with fast ions (e.g., Refs. 3, 8, 9, 42, and

50–52). The peak activities of the order of 100 kBq were 4

orders of magnitude lower than the value needed for a clini-

cal positron emission tomography (PET) scan. Therefore, it

would be interesting to know the activity that can be reached

by ions accelerated in the deuterium gas-puff z-pinch.

The parameters of the deuteron pulse on the GIT-12

generator seem to be convenient for the production of 13N

isotopes via the 12C(d,n)13N reactions. 13N isotopes with a

10 min half-life are often used for PET myocardial perfusion

imaging.53 As was mentioned at the end of Section III A, the

radioactivity inside the experimental chamber did not allow

us to analyze short-lived isotopes with a half-life in minutes.

Nevertheless, we are able to make reasonable quantitative

predictions for deuteron bombardment of graphite on the ba-

sis of our experiment with the lithium-fluoride catcher (see

Section III B).

The thick-target neutron yields for lithium fluoride and for

graphite are displayed in Fig. 5. The convolution of our high-

energy tail f ðEdÞ ¼ dN=dEd / E�2
d with the thick-target yield

YðEdÞ is 4.5-times smaller for graphite than for lithium fluo-

ride. This ratio is not highly sensitive to the power law index k
in the high-energy tail dependence f ðEdÞ ¼ E�k

d . On the basis

of the 4.5(60.5) ratio and (2.0 6 0.5)� 1012 neutrons from the

LiF sample, we may conclude that our deuteron pulse would

produce (4.5 6 1.5)� 1011 radioactive nitrogen isotopes.

Calculating with the half-life of 598 s, we obtain (0.8 6 0.3)

GBq activity shortly after the deuteron bombardment. Such ac-

tivity is supposed to be sufficient for a clinical PET scan.54

Even though it is relatively high activity, there is no need to

replace traditional ion sources for PET imaging. In contrast, it

is desirable to think about innovative applications based on the

strong points of z-pinches which are able to efficiently com-

press stored electrical energy in time and space. The potential

of z-pinches, therefore, lies in the nanosecond duration of

intense ion or neutron pulses. The application of z-pinches as

ion sources is made difficult by debris escaping from a dis-

charge. However, this is not a serious problem for fast neutrons

which are able to penetrate through chamber walls, whereas

troublesome debris produced by a z-pinch remains within an

experimental chamber. Therefore, it seems natural to research

z-pinches as nanosecond sources of neutrons. One of the possi-

ble applications is suggested in Sec. VI B.

B. Fast-neutron radiograph with a nanosecond
exposure

The previous paragraphs show that gas-puff z-pinches

are able to produce a large number of ions within several

nanoseconds. In order to demonstrate that also neutron num-

bers are sufficient for future applications, we tried to obtain

the first z-pinch generated neutron radiograph. The scheme

of an experimental set-up is shown in Figs. 11(a)–11(d). As

a detector, we used two 1.2 mm thick CR-39 foils. The

shielded CR-39 detector was placed behind various materials

at the return-current cage, i.e., in the radial direction at

25 cm from the neutron source. The advantage of the CR-39

nuclear track detector is that it is not sensitive to x-rays and

electrons. Since all ions emitted in the radial direction were

absorbed by 2 mm thick aluminum shielding, the CR-39 de-

tector recorded only neutrons. The neutron detection effi-

ciency of CR-39 material after etching is quite low, of the

order of 10�4. In addition to that, the proton tracks are easily

observable with the naked eye when there are more than 300

000 tracks per square cm2. Therefore, to obtain a visible

image at 25 cm, we accumulated neutrons from 20 shots with

the total neutron yield of 3� 1013. The accumulation of 20

shots is not a limitation of our z-pinch. Since much more

sensitive detectors are now available (e.g., Ref. 10), one neu-

tron pulse generated by our z-pinch is essentially sufficient

for neutron radiograph production. Besides that, the accumu-

lation of 20 shots enables a rough estimate of the spatial fluc-

tuation of a neutron source. The obtained experimental result

is shown in Fig. 11(e). Even though the lengths of aluminum,

lead, and stainless-steel blocks were only 3.5 or 4.0 cm, it is

possible to see a quite contrast image which is in qualitative

agreement with Monte Carlo N-Particle (MCNP) simula-

tion.36 By comparing Fig. 11(e) with Fig. 11(f), it can be

FIG. 11. Neutron radiography of 3.5 cm long, 4 cm high blocks of different

materials. (a) Experimental arrangement, 3D view. (b) Experimental

arrangement, detail 3D view. (c) Experimental arrangement, top view. (d)

Experimental arrangement, side-on view. (e) Scan of the etched CR-39 de-

tector, side-on view. (f) MCNP simulation of neutron fluence at the CR-39

detector, side-on view. The MCNP simulation was performed with a point

neutron source with the spectrum from Ref. 19. It should be noted that the

transparency of the CR-39 detector depended not only on the neutron fluence

but also on neutron energies which were different behind each block.
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seen that all features observed in the experiment were repro-

duced by the MCNP simulation.

VII. SUMMARY

In summary, we have presented the most important

characteristics of the ion pulse generated by the novel config-

uration of the deuterium gas-puff z-pinch. We demonstrated

that the gas-puff z-pinch on the GIT-12 generator is a power-

ful source of multi-MeV protons, deuterons, and neutrons.

On the GIT-12 generator, multi-MeV ions were accelerated

with a megaampere current. Since MA currents can be

achieved with more compact, rep-rate drivers, which have

become available,55 our experimental results might be very

important for many advanced applications. In this paper, we

presented the first neutron radiograph generated by �20 ns

pulses from the z-pinch. On the basis of our experiments, we

further showed that a single shot would have been sufficient

to obtain GBq positron activity of short-lived isotopes with a

half-life in minutes. Even though these results are still far

from commercial applications, it is evident that z-pinches

may become unique sources of fast ions and neutrons.

The record values of ion energies and numbers do raise

the question of what can be achieved at even higher cur-

rents? At this point, we should note that 100 kA z-pinches

are able to generate up to 1 MeV deuterons,56 whereas deu-

teron energies in MA z-pinches might exceed 10 MeV.

Therefore, there is a good chance that optimized experiments

at >10 MA currents could lead to breakthrough in z-pinch

physics and applications. To provide an answer to the above

mentioned question, better knowledge of acceleration mech-

anisms in z-pinches is required. This is precisely the area of

our further research.
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