Klasifikace realizací náhodných množin
Classification of Realisations of Random Sets
Type of document
diplomová prácemaster thesis
Author
Bogdan Radović
Supervisor
Helisová Kateřina
Opponent
Staněk Jakub
Field of study
Lékařská technikaStudy program
Lékařská elektronika a bioinformatikaInstitutions assigning rank
katedra teorie obvodůRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Random sets have gained significant importance in recent years as a valuable tool for modelling a wide range of phenomena in fields such as biology, geology, medicine, or material sciences. However, to the best of our knowledge, classification of their realisations has not yet been studied. In the presented work, a link between methods for random sets and functional data analysis is built that focusses on evaluating functional characteristics from individual components in the realisations based on their shape. Such obtained functional data is then used for nonparametric classification using both supervised and unsupervised approach based on k-nearest neighbours and k-means algorithms, respectively. The proposed procedures have been justified through a simulation study. Finally, the procedure is applied to medical data to show its applicability in practice. Random sets have gained significant importance in recent years as a valuable tool for modelling a wide range of phenomena in fields such as biology, geology, medicine, or material sciences. However, to the best of our knowledge, classification of their realisations has not yet been studied. In the presented work, a link between methods for random sets and functional data analysis is built that focusses on evaluating functional characteristics from individual components in the realisations based on their shape. Such obtained functional data is then used for nonparametric classification using both supervised and unsupervised approach based on k-nearest neighbours and k-means algorithms, respectively. The proposed procedures have been justified through a simulation study. Finally, the procedure is applied to medical data to show its applicability in practice.
Collections
- Diplomové práce - 13131 [192]
Related items
Showing items related by title, author, creator and subject.
-
Mapování podpovrchových defektů robotickým ramenem se speciální koncovkou
Author: David Hanč; Supervisor: Valach Jaroslav; Opponent: Falta Jan
(České vysoké učení technické v Praze. Vypočetní a informační centrum.Czech Technical University in Prague. Computing and Information Centre., 2021-09-10)Bakalářská práce je zaměřena na problematiku nedestruktivních zkoušek materiálu s využitím klasifikace audiosignálu. Cílem práce je identifikace podpovrchových vad na základě analýzy zvukové odezvy materiálu a ověřit ... -
Odhad dalšího vývoje odvětví informačních a komunikačních technologií
Author: Barbora Staroňová; Supervisor: Brabec Zdeněk; Opponent: Křepelka Václav
(České vysoké učení technické v Praze. Vypočetní a informační centrum.Czech Technical University in Prague. Computing and Information Centre., 2019-06-11)Práca sa zaoberá vývojom odvetvia informačných a komunikačných technológií od roku 2008, ktoré skúma na vybraných kľúčových aktéroch. Mapuje vývoj ich produkcie za zvolenú časovú periódu desať rokov. Práca obsahuje stručné ... -
Visibility-driven Mesh Analysis and Visualization through Graph Cuts
Author: Zhou, Kaichi; Zhang, Eugene; Bittner, Jiří; Wonka, Peter
(IEEE Computer Society, 2008-11)In this paper we present an algorithm that operates on a triangular mesh and classifies each face of a triangle as either inside or outside. We present three example applications of this core algorithm: normal orientation, ...